Skip to main content

Cap-Independent Translation in Adenovirus Infected Cells

  • Chapter
Cap-Independent Translation

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 203))

Abstract

Adenoviruses (Ads) are DNA viruses that infect humans, animals and birds, with different serotypes displaying different tissue tropisms (Beladi 1972). Ad was originally isolated because infection results in cytopathic effects and alterations in basic cellular metabolism. The Ad genome is temporally organized into early and late transcription units that are activated before or with the onset of viral DNA replication, respectively. Six early transcription units encode products required for productive viral replication and transformation of the infected cell. Regions E1A and E1B are required for cellular transformation and transactivation of the other viral transcription units (Flint and Shenk 1989). Regions E2A and E2B are required for adenoviral DNA replication. Regions E3 and E4 are required for a variety of early viral functions, including suppression of histocompatability antigen expression (reviewed in Wold and Gooding 1991), transcriptional transactivation and regulation of nuclear to cytoplasmic transport of cellular and viral mRNAs (reviewed in Schneider and Zhang 1993). The products of the early transcription units comprise only a very minor proportion of cellular mRNA and protein synthesis, and there is no evidence for selective viral translation or inhibition of cell protein synthesis during the early part of the Ad life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvey JC, Wyckoff EE, Yu SF, Lloyd R, Ehrenfeld E (1991) Cis and trans cleavage activities of poliovirus 2A protease expressed in Escherichia coli. J Virol 65: 6077–6083

    PubMed  CAS  Google Scholar 

  • Anthony DD, Merrick WC (1991) Eucaryotic initiation factor elF-4F. J Biol Chem 266: 10218–10226

    PubMed  CAS  Google Scholar 

  • Babich A, Feldman CT, Nevins JR, Darnell JE, Weinberger C (1983) Effect of adenovirus on metabolism of specific host mRNAs: transport control and specific translational discrimination. Mol Cell Biol 3: 1212–1221

    PubMed  CAS  Google Scholar 

  • Beladi I (1972) Strains of human viruses. In: Majer M, Plotkin SA (eds) Adenoviruses. Karger, Basel

    Google Scholar 

  • Beltz GA, Flint SJ (1979) Inhibition of Hela cell protein synthesis during adenovirus infection. J Mol Biol 131:353–373

    Article  PubMed  CAS  Google Scholar 

  • Benhar I, Engelberg-Kulka H (1993) Frameshifting in the expression of the E. coli trpR gene occurs by the bypassing of a segment of ts coding region. Cell 72: 121–130

    Article  PubMed  CAS  Google Scholar 

  • Berget SM, Moore C, Sharp P (1977) Spliced segments at the 51 terminus of Ad2 late mRNA. Proc Natl Acad Sci USA 74:3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Berkener KE, Sharp PA (1985) Effect of tripartite leader on synthesis of a nonviral protein in adenovirus 5’ recombinant. Nucleic Acids Res 13: 841–857

    Article  Google Scholar 

  • Bonneau AM, Sonenberg N (1987) Involvement of the 24kd cap-binding protein in regulation of protein synthesis in mitosis. J Biol Chem 262: 11134–11139

    PubMed  CAS  Google Scholar 

  • Browning KS, Fletcher L, Ravel JM (1988) Evidence that the requirements for ATP and wheat germ initiation factors 4A and 4F are affected by a region of satellite tobacco necrosis virus RNA that is 3’ to the ribosomal binding site. J Biol Chem 262: 8380–8383

    Google Scholar 

  • Castrillo JL, Carrasco L (1987) Adenovirus late protein synthesis is resistant to the inhibition of translation induced by poliovirus. J Biol Chem 262: 7328–7334

    PubMed  CAS  Google Scholar 

  • Curran J, Kolakofsky D (1988) Scanning independent ribosomal initiation of the Sendai virus X protein. EMBO J 7: 2869–2874

    PubMed  CAS  Google Scholar 

  • DeBenedetti A, Rhoads RE (1990) Overexpression of eukaryotic protein synthesis initiation factor 4E in Hela cells results in aberrant growth and morphology. Proc Natl Acad Sci USA 87: 8212–8216

    Article  CAS  Google Scholar 

  • Dolph PJ, Racaniello V, Villamarin A, Palladino F, Schneider RJ (1988) The adenovirus tripartite leader eliminates the requirement for cap binding protein during translation initation. J Virol 62: 2059–2066

    PubMed  CAS  Google Scholar 

  • Dolph PJ, Huang J, Schneider RJ (1990) Translation by the adenovirus tripartite leader: Elements which determine independence from cap-binding protein complex. J Virol 64: 2669–2677

    Google Scholar 

  • Duncan R, Milburn SC, Hershey JWB (1987) Regulated phosphorylation and low abundance of Hela cell initiation factor elF-4F suggest a role in translational control. J Biol Chem 262: 380–388

    PubMed  CAS  Google Scholar 

  • Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JWB (1982) Inhibition of Hela cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000 dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257: 14806–14810

    PubMed  CAS  Google Scholar 

  • Fletcher L, Corbin SD, Browning KG, Ravel JM (1990) The absence of a m7G cap on Beta-globin mRNA and alfalfa mosaic virus 4 increases the amounts of initiation factor 4F required for translation. J Biol Chem 265: 19582–19587

    PubMed  CAS  Google Scholar 

  • Flint J, Shenk T (1989) Adenovirus E1a protein: paradigm viral transactivator. Annu Rev Genet 23: 141–161

    Article  PubMed  CAS  Google Scholar 

  • Frederickson RM, Sonenberg N (1993) elF-4E phosphorylation and the regulation of protein synthesis. In: Nan J (ed) Translational regulation of gene expression, vol 2. Plenum, New York

    Google Scholar 

  • Frederickson RM, Montine KS, Sonenberg N (1991) Phosphorylation of eucaryotic translation initiation factor 4E is increased in Src-transformed cell lines. Mol Cell Biol 11: 2896–2900

    PubMed  CAS  Google Scholar 

  • Futterer J, Kiss-Laszlo Z, Hohn T (1993) Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell 73: 789–802

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg HS (1984) The adenoviruses. Plenum, New York

    Google Scholar 

  • Grifo JA, Tahara SM, Morgan MA, Shatkin AJ, Merrick WC (1983) New initiator activity required for globin mRNA translation. J Biol Chem 258: 5804–5810

    PubMed  CAS  Google Scholar 

  • Hiremath LS, Hiremath ST, Rychlik W, Joshi S, Domier LL, Rhoads RE (1989) In vitro synthesis, phosphorylation and localization on 48S initiation complexes of human protein synthesis initiation factor 4E. J Biol Chem 264: 1132–1138

    PubMed  CAS  Google Scholar 

  • Huang J, Schneider RJ (1990) Adenovirus inhibition of cellular protein synthesis is prevented by the drug 2-aminopurine. Proc Natl Acad Sci USA 87: 7115–7119

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Schneider RJ (1991) Adenovirus inhibition of cellular protein synthesis involves inactivation of cap binding protein. Cell 65: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Huang WM, Ao SZ, Casjens S, Orlandi R, Zeikus R, Weiss R, Winge D, Fang M (1988) A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60. Science 239: 1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ (1991) Initiation without an end. Nature 353: 14–15

    Article  PubMed  CAS  Google Scholar 

  • Jang SK, Krausslich HG, Nicklin MJH, Duke GM, Palmenberg AC, wimmer E (1988) A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62: 2636–2643

    PubMed  CAS  Google Scholar 

  • Jang SK, Davies MV, Kaufman RJ, Wimmer E (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5’ nontranslated region of encephalomyocarditis virus RNA in vivo. J Virol 63: 1651–1660

    PubMed  CAS  Google Scholar 

  • Joshi-Barve S, Rychlik W, Rhoads RE (1990) Alteration of the major phosphorylation site of eukaryotic protein synthesis initiation factor 4E prevents its association with the 48S initation complex. J Biol Chem 265: 2979–2983

    PubMed  CAS  Google Scholar 

  • Kaspar R, Rychlik W, White MW, Rhoads RE, Morris DR (1990) Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J Biol Chem 265: 3619–3622

    PubMed  CAS  Google Scholar 

  • Kaufman RJ (1985) Identification of the components necessary for adenovirus translational control and their utilization in cDNA expression vectors. Proc Natl Acad Sci USA 82: 689–693

    Article  PubMed  CAS  Google Scholar 

  • Lamphear BJ, Panniers R (1991) Heat shock impairs the interaction of cap binding protein complex with 5’ mRNA cap. J Biol Chem 266: 2789–2794

    PubMed  CAS  Google Scholar 

  • Lawson TG, Ray BK, Dodds JT, Grifo JA, Abramson RD, Merrick WC, Betsch DF, Weith HL, Thach RE Influence of 5’ proximal secondary structure on the translational efficiency of eukaryotic mRNAs and on their interaction with initiation factors. J Biol Chem 261: 13979–13989

    PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’ cap. Nature 345: 544–547

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Peterson R (1991) Selective translation and degradtion of heat shock messenger RNAs in drosophila. Enzyme 44: 147–166

    CAS  Google Scholar 

  • Logan J, Shenk T (1984) Adenovirus tripartite leader sequence enhances translation of mRNAs late after infection. Proc Natl Acad Sci USA 81: 3655–3659

    Article  PubMed  CAS  Google Scholar 

  • Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5’ leader of a cellular mRNA. Nature 353: 90–94

    Article  PubMed  CAS  Google Scholar 

  • Marino MW, Pfeffer LM, Guidon PT, Donner DB (1989) Tumor necrosis factor induces phosphorylation of a 28kd mRNA cap-binding protein in human cervical carcinoma cells. Proc Natl Acad Sci USA 86: 8417–8421

    Article  PubMed  CAS  Google Scholar 

  • Mathews MB, Shenk T (1991) Adenovirus virus-associated RNA and translational control. J Virol 65: 5657–5662

    PubMed  CAS  Google Scholar 

  • Morley SJ, Traugh JA (1989) Phorbol esters stimulate phosphorylation of eukaryotic initiation factors 3, 4B and 4F. J Biol Chem 264: 2401–2404

    PubMed  CAS  Google Scholar 

  • Pause A, Mehtot N, Svitkin Y, Merrick WC, Sonenberg N (1994) Dominant negative mutants of mammalian initation factor elF-4A define a critical role for elF-4F in cap-dependent and cap- independent initation of translation. EMBO J 13: 1205–1215

    PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320–325

    Article  PubMed  CAS  Google Scholar 

  • Ray BK, Lawson TG, Kramer JC, Cladarns MH, Grifo JA, Abramson RD, Merrick WC, Thach RE (1985) ATP dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem 260: 7651–7658

    PubMed  CAS  Google Scholar 

  • Rhoads RE (1988) Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem Sci 13: 52–56

    Article  PubMed  CAS  Google Scholar 

  • Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N (1990) Bidirectional RNA helicase activity of eukaryotic translation initiation factor 4A and 4F. Mol Cell Biol 10: 1134–1144

    PubMed  CAS  Google Scholar 

  • Rychlik W, Gardner PR, Vanaman TC, Rhoads RE (1986) Structural analysis of the messenger RNA cap- binding protein. J Biol Chem 261: 71–75

    PubMed  CAS  Google Scholar 

  • Sarnow P (1989) Translation of glucose regulated protein 78/immunoglobulin heavy chain binding protein mRNA is increased in poliovirus infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proc Natl Acad Sci USA 86: 5795–5799

    Article  PubMed  CAS  Google Scholar 

  • Schneider RJ, Zhang Y (1993) Translational regulation in adenovirus infected cells. In: Nan J (ed) Translational regulation of gene expression, vol 2. Plenum, New York, pp 227–250

    Chapter  Google Scholar 

  • Smith MR, Saramllo M, Liv L-L, Dever TE, Merrick WC, Kung HF and Sonenberg N (1990) Translation initiation factors induce DNA synthesis and transform NIH 3T3 cells. New Biol 2: 648–654

    PubMed  CAS  Google Scholar 

  • Sonenberg N, Guertin D, Lee KAW (1982) Capped mRNAs with reduced secondary structure can function in extracts from poliovirus infected cells. Mol Cell Biol 2: 1633–1638

    PubMed  CAS  Google Scholar 

  • Thach RE (1992) Cap recap: the involvement of elF-4F in regulating gene expression. Cell 68: 177–180

    Article  PubMed  CAS  Google Scholar 

  • Thimmapaya B, Ghadge GD, Rajan P, Swaminathan S (1993) Translational control by adenovirus-associated RNA I. In: Man J (ed) Translational regulation of gene expression, vol 2. Plenum, New York, pp 203–226

    Chapter  Google Scholar 

  • Thomas AAM, Ter Haar E, Wellink J, Voorma HO (1991) Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. J Virol 65: 2953–2959

    PubMed  CAS  Google Scholar 

  • Thomas AM, Scheper GC, Kleijn M, DeBoer M, Voorma HO (1992) Dependence of the adenovirus tripartite leader on the p220 subunit of eukaryotic initation factor 4F during in vitro translation. Eur J Biochem 207: 471–477

    Article  PubMed  CAS  Google Scholar 

  • Wold WSM, Gooding LR (1991) Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Zapata JM, Maroto FG, Sierra JM (1991) Inactivation of mRNA cap-binding protein complex in Drosophila melanogaster embryos under heat shock. J Biol Chem 266: 16007–16014

    PubMed  CAS  Google Scholar 

  • Zhang y, Schneider RJ (1993) Adenovirus inhibition of cellular protein synthesis and the preferential translation of late viral mRNAs. Semin Virol 4: 229–236

    Article  CAS  Google Scholar 

  • Zhang Y, Dolph PJ, Schneider RJ (1989) Secondary structure analysis of adenovirus tripartite leader. J Biol Chem 264: 10679–10684

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, R.J. (1995). Cap-Independent Translation in Adenovirus Infected Cells. In: Sarnow, P. (eds) Cap-Independent Translation. Current Topics in Microbiology and Immunology, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79663-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79663-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79665-4

  • Online ISBN: 978-3-642-79663-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics