Role for Astrocytosis in HIV-1-Associated Dementia

  • L. Vitković
  • A. da Cunha
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 202)

Abstract

HIV-1-associated dementia occurs in approximately one third of individuals infected with HIV-1, sometimes as the only presenting symptom (McArthur et al. 1994; for refinement of this number see Grant et al., this volume). It involves deficits in cognitive and higher motor functions. The dementia is linked to structural changes in neurons observed post mortem. The changes vary from dendritic dearborization to neuronal drop out (Masliah et al. 1992). Large pyramidal neurons especially vulnerable to as yet unknown pathogenic stimuli are located in the cerebral cortex. The cortex is the brain region known to control cognitive and motor functions. These functions are altered or deficient in AIDS patients. Thus, neuronal dysfunction is a likely direct cause of HIV-1-associated dementia. The precise cause and nature of neuronal dysfunction in AIDS are unknown. HIV-1-associated neuronal damage may be mediated by activation of one family of glutamate receptors (Lipton 1992). Glutamate is the major excitatory neurotransmitter in the brain. Glutamate receptor-mediated neuronal death—excitotoxicity—is implicated in the pathogenesis of several disorders affecting mental health such as Alzheimer’s dementia (Choi 1994).

Keywords

Urea Lymphoma Dementia Shrinkage Anemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aquino DA, Shafit-Zagardo B, Brosnan CF, Norton WT (1990) Expression of glial fibrillary acidic protein and neurofilament mRNA in gliosis induced by experimental autoimmune encephalomyelitis. J Neurochem 54: 1398–1404PubMedCrossRefGoogle Scholar
  2. Budka H (1990) Human immunodeficiency virus (HIV) envelope and core proteins in CNS tissues of patients with the acquired immune deficiency syndrome (AIDS). Acta Neuropathol (Berl) 79: 611–619CrossRefGoogle Scholar
  3. Budka H, Costanzi G, Cristina S, Lechi A, Parravicini C, Trabattoni R, Vago L (1987) Brain pathology induced by infection with the human immunodeficiency virus ( HIV ). Acta Neuropathol (Berl) 75: 185–198PubMedCrossRefGoogle Scholar
  4. Chakrabarti L, Hurtrel M, Maire M-A, Vazeux R, Dormont D, Montagnier L, Hurtrel B (1991) Early viral replication in the brain of SIV-infected rhesus monkeys. Am J Pathol 139: 1273–1280PubMedGoogle Scholar
  5. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium ways and oscillations in response to mechanical stimulation and glutamate. Neuron 6: 983–992PubMedCrossRefGoogle Scholar
  6. Choi DW (1994) Glutamate receptor-mediated neuronal death. In: Zalcman S, Scheler R, Tsien R (eds) Molecular neurobiology. US Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda MDGoogle Scholar
  7. Ciardi A, Sinclair E, Scaravilli F, Harcourt-Webster NJ, Lucas S (1990) The involvement of the cerebral cortex in human immunodeficiency virus encephalopathy: a morphological and immunohistochemical study. Acta Neuropathol (Berl) 81: 51–59CrossRefGoogle Scholar
  8. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473PubMedCrossRefGoogle Scholar
  9. da Cunha A, Vitkovic L (1992) Transforming growth factor beta-1 (TGF-131) expression and regulation in rat cortical astrocytes. J Neuroimmunol 36: 157–169PubMedCrossRefGoogle Scholar
  10. da Cunha A, Jefferson JJ, Jackson RW, Vitkovic L (1993a) Glial cell-specific mechanisms of TGF-(31 induction by IL-1 iu cerebral cortex. J Neuroimmunol 42: 71–86PubMedCrossRefGoogle Scholar
  11. da Cunha A, Jefferson JJ, Tyor WR, Glass JD, Jannotta FS, Vitkovic L (1993b) Gliosis in human brain: relationship to size but not other properties of astrocytes. Brain Res 600: 161–165PubMedCrossRefGoogle Scholar
  12. da Cunha A, Jefferson JJ, Tyor WR, Glass JD, Jannotta FS, Vitkovic L (1993c) Control of astrocytosis by interleukin-1 and transforming growth factor-b1 in human brain. Brain Res 631: 39–45PubMedCrossRefGoogle Scholar
  13. Dani JW, Chernjaysky Y, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440PubMedCrossRefGoogle Scholar
  14. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992) Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology 42: 1737–1739Google Scholar
  15. Denis-Donini S, Glowinski J, Prochiantz A (1984) Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature 307: 641–643PubMedCrossRefGoogle Scholar
  16. Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 54: 15–36PubMedCrossRefGoogle Scholar
  17. Epstein LG, Gendelman HE (1993) Human immunodeficiency virus type 1 infection of the nervous system: pathogenetic mechanisms. Ann Neurol 33: 429–436PubMedCrossRefGoogle Scholar
  18. Funata N, Maeda Y, Koike M, Okeda R (1991) Neuropathology of the central nervous system in acquired immune deficiency syndrome (AIDS) in Japan. With special reference to human immunodeficiency virus-induced encephalomyelopathies. Acta Pathol Jpn 41: 206–211PubMedGoogle Scholar
  19. Gray F, Lescs M-C, Keohane C, Paraire F, Marc B, Durigon M, Gherardi RJ (1992) Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol 51: 177–185PubMedCrossRefGoogle Scholar
  20. Hallermayer K, Hamprecht B (1984) Cellular heterogeneity in primary cultures of brain cells revealed by immunocytochemical localization of glutamine synthetase. Brain Res 295: 1–11PubMedCrossRefGoogle Scholar
  21. Holzwarth JA, Gibbons SJ, Brorson JR, Philipson LH, Miller RJ (1994) Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J Neurosci 14: 1879–1891PubMedGoogle Scholar
  22. Hurtrel B, Chakrabarti L, Hurtrel M, Maire MA, Dormont D, Montagnier LJ (1991) Early SIV encephalopathy. J Med Primatol 20: 159–166PubMedGoogle Scholar
  23. Kure K, Wiedenheim KM, Lyman WD, Dickson DW (1990a) Morphology and distribution of HIV-1 gp41positive microglia in subacute AIDS encephalitis. Acta Neuropathol (Berl) 80: 393–400CrossRefGoogle Scholar
  24. Kure K, Lyman WD, Weidenheim KM, Dickson DW (1990b) Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labelling immunohistochemical method. Am J Pathol 136: 1085–1092PubMedGoogle Scholar
  25. Kure K, Llena JF, Lyman WD, Soeiro R, Weidenheim KM, Hirano A, Dickson DW (1991) Human immunodeficiency virus-1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum Pathol 22: 700–710PubMedCrossRefGoogle Scholar
  26. Lenhardt TM, Super MA, Wiley CA (1988) Neuropathological changes in an asymptomatic HIV seropositive man. Ann Neurol 23: 209–210PubMedCrossRefGoogle Scholar
  27. Lipsky RH, Silverman SJ (1987) Effects of mycophenolic acid on detection of alial filaments in human and rat astrocytoma cultures. Cancer Res 47: 4900–4904PubMedGoogle Scholar
  28. Lipton SA (1992) Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci 15: 75–79PubMedCrossRefGoogle Scholar
  29. Locksley RM, Crowe S, Sadick MD, Heinzel FP, Gardner KD, McGrath MS, Mills J (1988) Release of interleukin 1 inhibitory activity (contra-IL-1) by human monocyte-derived macrophages infected with human immunodeficiency virus in vitro and in vivo. J Clin Invest 82: 2097–2104PubMedCrossRefGoogle Scholar
  30. Masliah E, Achim CL, Ge N, DeTeresa R, Terry RD, Wildy CA (1992) Spectrum of human immunodeficiency virus-associated neocortical damage. Ann Neurol 32: 321–323PubMedCrossRefGoogle Scholar
  31. McArthur JC, Becker PS, Parisi JE, Trapp B, Seines OA, Cornblath DR, Balakrishnan J, Griffin JW, Price D (1989) Neuropathological changes in early HIV-1 dementia. Ann Neurol 26: 681–684PubMedCrossRefGoogle Scholar
  32. McArthur JC, Seines OA, Glass JD, Hoover DR, Bacellar H (1994) HIV dementia. Incidence and risk factors. In: Price RW, Perry SW (eds) HIV, AIDS and the brain. Raven, New York, pp 251–272Google Scholar
  33. Mearow KM, Mill JF, Vitkovic L (1989) The ontogeny and localization of glutamine synthetase gene expression in rat brain. Mol Brain Res 6: 223–232PubMedCrossRefGoogle Scholar
  34. Mennerick S, Zorumski CF (1994) Glial contributions of excitatory neurotransmission in cultured hippocampal cells. Nature 368: 59–62PubMedCrossRefGoogle Scholar
  35. Merrill JE, Koyangi Y, Chen ISY (1989) Interleukin-1 and tumor necrosis factor-a can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63: 4404–4408PubMedGoogle Scholar
  36. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263: 1768–1769PubMedCrossRefGoogle Scholar
  37. Norton WT, Aquino DA, Hozumi I, Chiu C-F, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17: 877–885PubMedCrossRefGoogle Scholar
  38. Privat A, Rataboul P (1986) Fibrous and protoplasmic astrocytes. In: Federoff S, Vernadakis A (eds) Astrocytes, vol 1. Academic, New York, pp 105–129Google Scholar
  39. Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243: 1450–1455PubMedCrossRefGoogle Scholar
  40. Rausch DM, Heyes MP, Murray EA, Lendvay L, Sharer LR, Ward JM, Rehm S, Nohr D, Weihe E, Eiden LE (1994) Cytopathological and neurochemical correlates of progression of motor/cognitive impairment in SIV-infected rhesus monkeys. J Neuropathol Exp Neurol 53: 165–175PubMedCrossRefGoogle Scholar
  41. Schmidbauer M, Huemer M, Cristina S, Trabattonic GR, Budka H (1992) Morphological spectrum, distribution and clinical correlation of white matter lesions in AIDS brains. Neuropathol Appl Neurobiol 18: 489–501PubMedCrossRefGoogle Scholar
  42. Shinoda H, Marini AM, Cosi C, Schwartz JP (1989) Brain region and gene specificity of neuropeptide gene expression in cultured astrocytes. Science 245: 415–417PubMedCrossRefGoogle Scholar
  43. Smith TW, DeGirolami U, Henin D, Bolgert F, Hauw JJ (1991) Human immunodeficiency virus (HIV) leukoencephalopathy and the microcirculation. J Neuropathol Exp Neurol 49: 357–370CrossRefGoogle Scholar
  44. Tchelingerian J-L, Quinonero J, Booss J, Jacque C (1993) Localization of TNF-a and IL-la immuno-reactivities in striatal neurons after surgical injury to the hippocampus. Neuron 10: 213–224PubMedCrossRefGoogle Scholar
  45. Toru-Delbauffe D, Bagdassarian-Chalaye D, Gavaret JM, Courtin F, Pomerance M, Pierre M (1990) Effects of transforming growth factor β1 on astroglial cells in culture. J Neurochem 54: 1056–1061PubMedCrossRefGoogle Scholar
  46. Vitkovic L, Tyor RW, da Cunha A (1994) Cytokine expression and regulation of pathogenesis in AIDS brain. In: Price RW, Perry SW (eds) HIV, AIDS and the brain. Raven, New York, pp 203–222Google Scholar
  47. Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB (1987) Transforming growth factor type β induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA 84: 5788–5792PubMedCrossRefGoogle Scholar
  48. Weihe E, Nohr D, Sharer L, Murray E, Rausch D, Eiden L (1993) Cortical astrocytosis in juvenile rhesus monkeys infected with simian immunodeficiency virus. Neuroreport 4: 263–266PubMedCrossRefGoogle Scholar
  49. Wilkin GP, Marriott DR, Cholewinski AJ (1990) Astrocyte heterogeneity. Trends Neurosci 13: 43–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • L. Vitković
    • 1
  • A. da Cunha
    • 2
  1. 1.Division of Neuroscience and Behavioral ScienceNational Institute of Mental Health, National Institutes of HealthRockvilleUSA
  2. 2.Laboratory of Cell BiologyNational Institute of Mental Health, National Institutes of HealthBethesdaUSA

Personalised recommendations