Skip to main content

Virus Entry and Release in Polarized Epithelial Cells

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 202))

Abstract

Many viruses initiate their infection processes by interacting with cells in tight epithelial layers, which line the surfaces of the body that are exposed to the external environment. The cell biology of this virus-cell interaction may be one of the important factors which play a role in viral pathogenesis. The individual cells in epithelial layers are tightly connected by junctional complexes, which form a barrier to diffusion of molecules across the cell layer and also divide the cell surface into two distinct plasma membrane domains: the apical domain which faces the lumen, and the basolateral domain which faces the interior of the body. In addition to their role in providing a permeability barrier, the junctional complexes restrict the lateral diffusion of membrane proteins and lipids between the apical and basolateral plasma membrane domains. As a result of the restricted diffusion of membrane components as well as the differential targeting of distinct sets of lipids and proteins to apical vs basolateral membranes, the epithelial cells in such tissues are highly polarized, with each plasma membrane domain having a distinct lipid and protein composition (reviewed by Rodriguez-Boulan and Nelson 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi A, Koenig S, Gendelman HE, Daugherty D, Gattoni-Celli S, Fauci AS, Martin MA (1987) Productive, persistent infection of human colorectal cell lines with human immunodeficiency virus. J Virol 61: 209–213

    PubMed  CAS  Google Scholar 

  • Amerongen H, Weltzin R, Farnet C, Michetti P, Haseltine W, Neutra M (1991) Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J AIDS 4: 760–765

    CAS  Google Scholar 

  • Anderson GWJ, Smith JF (1987) Immunoelectron microscopy of rift valley fever viral morphogenesis in primary rat hepatocytes. Virology 161: 91–100

    Article  PubMed  Google Scholar 

  • Ball J, Moldoveanu Z, Melsen LR, Kozlowski PA, Jackson S, Mulligan MJ, Mestecky JF, Compans RW (1995) A polarized human endometrial cell line which binds and transports polymeric IgA In Vitro Cell. Dev Biol 31: 196–206

    Article  CAS  Google Scholar 

  • Bienz K, Egger D, Wolff DA (1973) Virus replication, cytopathology, and lysosomal enzyme response of mitotic and interphase hep-2 cells infected with poliovirus. J Virol 11: 565–574

    PubMed  CAS  Google Scholar 

  • Bourinbaiar AS, Phillips DM (1991) Transmission of human immunodeficiency virus from monocytes to epithelia. J AIDS 4: 56–63

    CAS  Google Scholar 

  • Chen S-Y, Matsuoka Y, Compans RW (1991) Golgi complex localization of the Punta Toro virus G2 protein requires its association with the G1 protein. Virology 183: 351–365

    Article  PubMed  CAS  Google Scholar 

  • Clayson ET, Compans RW (1988) Entry of SV40 is restricted to apical surfaces of polarized epithelial cells. Mol Cell Biol 8: 3391–339

    PubMed  CAS  Google Scholar 

  • Clayson ET, Brando LVJ, Compans RW (1989) Release of SV40 virions from epithelial cells is polarized and occurs without cell lysis. J Virol 63: 2278–2288

    PubMed  CAS  Google Scholar 

  • Dales S, Eggers HJ, Tamm I, Palade GE (1965) Electron microscopic study of the formation of poliovirus. Virology 26: 379–389

    Article  PubMed  CAS  Google Scholar 

  • Darlington RW, Moss LJI (1968) Herpesvirus envelopment. J Virol 2: 48–55

    PubMed  CAS  Google Scholar 

  • Dropulic B, Masters CL (1990) Entry of neurotropic arboviruses into the central nervous system: an in vitro study using mouse brain endothelium. J Infect Dis 161: 685–691

    Article  PubMed  CAS  Google Scholar 

  • Dunnebacke TH, Levinthal JD, Williams RC (1969) Entry and release of poliovirus as observed by electron microscopy of cultured cells. J Virol 4: 505–53

    Article  PubMed  CAS  Google Scholar 

  • Fantini J, Baghdiguian S, Yahi N, Chermann J-C (1991) Selected human immunodeficiency virus replicates preferentially through the basolateral surface of differentiated human colon epithelial cells. Virology 185: 904–907

    Article  PubMed  CAS  Google Scholar 

  • Fantini J, Cook DG, Nathanson N, Spitalnik SL, Gonzalez-Scarano F (1993) Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor. Proc Natl Acad Sci USA 90: 2700–2704

    Article  PubMed  CAS  Google Scholar 

  • Fuller SD, Bonsdorff C-H, Simons K (1984) Vesicular stomatitis virus infects and matures only through the basolateral surface of the polarized epithelial cell line, MDCK. Cell 38: 65–77

    Article  CAS  Google Scholar 

  • Fuller SD, von Bonsdorff C-H, Simons K (1985) Cell surface influenza haemagglutinin can mediate infection by other animal viruses. EMBO J 4: 2475–2485

    PubMed  CAS  Google Scholar 

  • Haffar O, Garrigues J, Travis B, Morgan P, Zarling J, Hu S-L (1990) Human immunodeficiency virus-like, nonreplicating, gag-env particles assemble in a recombinant vaccinia virus expression system. J Virol 64: 2653–2659

    PubMed  CAS  Google Scholar 

  • Jones LV, Compans RW, Davis AR, Bos TJ, Nayak DP (1985) Surface expression of the influenza neuraminidase, an amino-terminally anchored viral membrane glycoprotein, in polarized epithelial cells. Mol Cell Biol 5: 2181–2189

    PubMed  CAS  Google Scholar 

  • Karacostas V, Nagashima K, Gonda MA, Moss B (1989) Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector. Proc Natl Acad Sci USA 86: 8964–8967

    Article  PubMed  CAS  Google Scholar 

  • Kristensson K, Lundh B, Norrby E, Payne L, Orvell C (1984) Asymmetric budding of viruses in ependymal and choroid plexus epithelial cells. Neuropathol Appl Neurobiol 10: 209–219

    Article  PubMed  CAS  Google Scholar 

  • Lodge R, Gottlinger H, Gabuzda D, Cohen EA, Lemay G (1994) The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol 68: 4857–4861

    PubMed  CAS  Google Scholar 

  • Mendelsohn C, Wimmer E, Racaniello VR (1989) Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56: 855–865

    Article  PubMed  CAS  Google Scholar 

  • Miller CJ, Alexander NJ, Sujipto S, Lackner AA, Gettie A, Hendrickx AG, Lowenstine LJ, Jennings M, Marx PA (1989) Genital mucosa) transmission of simian immunodeficiency virus: animal model for heterosexual transmission of human immunodeficiency virus. J Virol 63: 4277

    PubMed  CAS  Google Scholar 

  • Moyer MP,.Gendelman HE (1991) HIV replication and persistence in human gastrointestinal cells cultured in vitro. J Leucoc Biol 49: 499–504

    Google Scholar 

  • Murphy JS, Bang FB (1952) Observations with the electron microscope on cells of the chick chorioallantoic membrane infected with influenza virus. J Exp Med 95: 259

    Article  PubMed  CAS  Google Scholar 

  • Nitsch L, Tramontano D, Ambesi-Impiombato FS, Quarto N, Bonatti S (1985) Morphological and functional polarity in an epithelial thyroid cell line. Eur J Cell Biol 35: 57–66

    Google Scholar 

  • Nobis P, Zibirre R, Meyer G, Kuhne J, Warnecke G,Koch G (1985) Production of a monoclonal antibody against an epitope on the Hela cells that is the functional poliovirus binding site. J Gen Virol 66: 2563–2569

    Google Scholar 

  • Owens RJ, Compans RW (1989) Expression of the HIV envelope glycoprotein is restricted to basolateral surfaces of polarized epithelial cells. J Virol 63: 978–982

    PubMed  CAS  Google Scholar 

  • Owens RJ, Dubay J, Hunter E, Compans RW (1991) The human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci USA 88: 3987–3991

    Article  PubMed  CAS  Google Scholar 

  • Phillips DM, Tan X (1992) Mechanism of trophoblast infection by HIV. AIDS Res Hum Retroviruses 9: 1697–1705

    Google Scholar 

  • Phillips DM, Bourinbaiar AS (1992) Mechanism of HIV spread from lymphocytes to epithelia. Virology 186: 261–273

    Article  PubMed  CAS  Google Scholar 

  • Rindler MJ, Traber MG (1988) A specific sorting signal is not required for the polarized secretion of newly synthesized proteins from cultured intestinal epithelial cells. J Cell Biol 107: 471–479

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez D, Rodriguez JR, Ojakian GK, Esteban M (1991) Vaccinia virus preferentially enters polarized epithelial cells through the basolateral surface. J Virol 65: 494–498

    PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E, Nelson J (1989) Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718–725

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E, Pendergast M (1980) Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20: 45–54

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E, Powell SK (1992) Polarity of epithelial and neuronal cells. Annu Rev Cell Biol 8: 395–427

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan E, Sabatini DD (1978) Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc Natl Acad Sci USA 75: 5071–5075

    Article  PubMed  CAS  Google Scholar 

  • Roth MG, Compans RW, Guisti L, Davis AR, Nayak DP, Gething MJ (1983) Influenza virus hemagglutinin expression is polarized in cells infected with recombinant SV40 viruses carrying cloned hemagglutinin DNA. Cell 33: 435–442

    Article  PubMed  CAS  Google Scholar 

  • Sabatini DD, Ivanov IE, Gottlieb TA, Compton T, Gonzales A, Beaudry G, Rindler MJ (1988) Use of cultured, virus-infected cells to study the biogenesis of polarity of epithelial cells. Ann Endocrinol 49: 270–286

    CAS  Google Scholar 

  • Sears AE, McGwuire B, Roizman B (1991) Infection of polarized MDCK cells with herpes simplex virus 1: two asymmetrically distributed cell receptors interact with different viral proteins. Proc Natl Acad Sci USA 88: 5087–5091

    Article  PubMed  CAS  Google Scholar 

  • Shioda T, Shibuta H (1990) Production of human immunodeficiency virus ( HIV)-like particles from cells infected with recombinant vaccinia viruses carrying the gag gene of HIV. Virology 175: 139–148

    Google Scholar 

  • Simons K, Wandinger-Ness A (1990) Polarized sorting in epithelia. Cell 62: 207–210

    Article  PubMed  CAS  Google Scholar 

  • Srinivas RV, Balachandran N, Alonso-Caplen FV, Compans RW (1986) Expression of herpes simplex virus glycoproteins in polarized epithelial cells. J Virol 58: 689–693

    PubMed  CAS  Google Scholar 

  • Stephens EB, Compans RW, Earl P, Moss B (1986) Surface expression of viral glycoproteins in polarized epithelial cells using vaccinia virus vectors. EMBO J 5: 237–245

    PubMed  CAS  Google Scholar 

  • Tan X, Pearce-Pratt R, Phillips DM (1993) Productive infection of a cervical epithelial cell line with human immunodeficiency virus: implications for sexual transmission. J Virol 67: 6477–6452

    Google Scholar 

  • Tashiro M, Yamakawa M, Tobita K, Seto JT, Klenk H-D, Rott R (1990) Altered budding site of a pantropic mutant of sendai virus, F1 -R, in polarized epithelial cells. J Virol 64: 4672–4677

    PubMed  CAS  Google Scholar 

  • Tucker SP, Compans RW (1993) Virus infection of polarized epithelial cells. In: Maramorosch K, Murphy FA, Shatkin AJ (eds) Advances in virus research, Vol 42. Academic, New York, pp 187–247

    Google Scholar 

  • Tucker SP, Melsen LR, Compans RW (1993e) Bi-directional entry of poliovirus into polarized epithelial cells. J Virol 67: 29–38

    PubMed  CAS  Google Scholar 

  • Tucker SP, Thornton CL, Wimmer E, Compans RW (1993b) The vectorial release of the poliovirus from polarized human intestinal epithelial cells and the effect of Brefeldin A. J Virol 67: 4274–4282

    PubMed  CAS  Google Scholar 

  • Wolf JL, Rubin DH, Finberg R, Dambrauskas R, Trier JS (1981) Intestinal M cells: a pathway for entry of retrovirus into the host. Science 212: 471–472

    Article  PubMed  CAS  Google Scholar 

  • Yahi N, Baghdiguian S,Bolmont C, Fantini J (1992e) Replication and apical budding of HIV-1 in mucous-secreting colonic epithelial cells. J AIDS 5: 993–1000

    CAS  Google Scholar 

  • Yahi N, Baghdiguian S, Moreau H, Fantini J (1992b) Galactosyl ceramide (or a highly related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT-29 cells. J Virol 66: 4848–4854

    PubMed  CAS  Google Scholar 

  • Zurzolo C, Polistinia C, Saini M, Gentile R, Aloj L, Migliaccio G, Bonatti S, Nitsch L (1992) Opposite polarity of virus budding and of viral envelope glycoprotein distribution in epithelial cells derived from different tissues. J Cell Biol 117: 551–564

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Compans, R.W. (1995). Virus Entry and Release in Polarized Epithelial Cells. In: Oldstone, M.B.A., Vitković, L. (eds) HIV and Dementia. Current Topics in Microbiology and Immunology, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79657-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79657-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79659-3

  • Online ISBN: 978-3-642-79657-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics