A simple Method to Generate Nodes for FE Modeling

  • Y. Kanto
  • A. A. A. Azim
Conference paper

Abstract

As long as the finite element method (FEM) is the main technique for numerical approximate solution of partial differential equations which govern the continua, automatic mesh generation has obviously a practical value in reducing errors and the time involved in data preparation.

Keywords

Defend Dmax 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. C. Zeinkeiwicz and D.V. Phillips, “An Automatic Mesh Generation Scheme for Plane and Curved Surfaces by Isoparametric Co-ordinate”, Int. J. Numer. Methods Eng., 3,519–528(1971).CrossRefGoogle Scholar
  2. [2]
    M. A. Yerry and M. S. Shephard, “A Modified Quadtree Approach to Finite Element Mesh Generation”, IEEE Computer Graphics and Applications, 3(1), 39–46 (1983).CrossRefGoogle Scholar
  3. [3]
    M. S. Shephard and M. A. Yerry, “Approaching the Automatic Generation of Finite Element Method”, Computers in Mech. Engng., 1(4), 49–56 (1983).Google Scholar
  4. [4]
    W. C. Thacker, “A Breif Review of Techniques for Generating Irregular Computational Grids”, Int. J. Numer. Methods Eng., 15, 1335–1341 (1980).MATHCrossRefGoogle Scholar
  5. [5]
    I. Imafuku, Y. Kodera, M. Sayawaki and M. Kono, “A Generalized Automatic Mesh Generation Scheme for Finite Element Method”, Int. J. Numer. Methods Eng., 15, 713–731 (1980).MATHCrossRefGoogle Scholar
  6. [6]
    M. A. Yerry and M. S. Shephard, “Automatic Three-Dimensional Mesh Generation by the Modified-Octree Technique”, Int. J. Numer. Methods Eng., 20, 1965–1990 (1984)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Y. Kanto
    • 1
  • A. A. A. Azim
    • 1
  1. 1.Toyohashi University of TechnologyJapan

Personalised recommendations