BIE Fracture Mechanics Analysis 25 Years of Developments

  • T. A. Cruse
Conference paper


The purpose of this paper is to provide a selective review of the unique properties of the boundary integral equation (BIE) method for problems in fracture mechanics. The paper draws on the extensive literature that has been developed over the past twenty-five years. Fracture mechanics problems have provided one of the most important applications of BIE formulations in solid mechanics and is one of the principal areas of application of the methods. In particular, the paper will focus on the role played by the Somigliana stress identity in providing unique algorithms and numerical results for fracture mechanics analysis not available to the finite element method.


Stress Intensity Factor Boundary Integral Equation Stress Singularity Strain Energy Release Rate Fracture Mechanic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. E. Inglis, Stresses in a plate due to the presence of cracks and sharp corners, Proceedings of the Institute of Naval Architects, 60, 219–230 (1913).Google Scholar
  2. [2]
    A. A. Griffith, The phenomenon of rupture and flow in solids, Phil. Trans. Royal Society, A, 221, 163–198 (1920).CrossRefGoogle Scholar
  3. [3]
    A. E. Green and I. N. Sneddon, The stress distribution in the neighborhood of a flat elliptical crack in an elastic solid, Proc. Cambridge Phil. Soc., 46, 159–163 (1950).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    M. L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mechs., 19, 526–528 (1952).Google Scholar
  5. [5]
    G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mechs., 24, 361–364 (1957).Google Scholar
  6. [6]
    T. A. Cruse, Lateral constraint in a cracked, three-dimensional elastic body, Int. J. Frac. Mechs., 6, 326–328 (1970).Google Scholar
  7. [7]
    D. J. Ayres, A numerical procedure for calculating stress and deformation near a slit in a three dimensional elastic plastic solid, Engrg. Fract. Mechs., 2, 87–106 (1970).CrossRefGoogle Scholar
  8. [8]
    T. A. Cruse and W. VanBuren, Three dimensional elastic stress analysis of a fracture specimen with an edge crack, International journal of Fracture Mechanics, 7, 1, 1–15 (1971).CrossRefGoogle Scholar
  9. [9]
    T. A. Cruse, Numerical solutions in three-dimensional elastostatics, Intl. J. Solids Struct, 5, 1259–1274 (1969).MATHCrossRefGoogle Scholar
  10. [10]
    D.M. Tracey, Finite elements for determination of crack tip elastic stress intensity factors, Engrg. Fract. Mechs., 3, 255–265 (1971).CrossRefGoogle Scholar
  11. [11]
    T. A. Cruse, Numerical evaluation of elastic stress intensity factors by the boundary-integral equation method, in The Surface Crack: Physical Problems and Computational Solutions, ed. J. L. Swedlow, American Society of Mechanical Engineers, 153–170 (1972).Google Scholar
  12. [12]
    T. A. Cruse, Application of the boundary-integral equation method to three dimensional stress analysis, Comp. & Struct, 3, 509–527 (1973).CrossRefGoogle Scholar
  13. [13]
    J. C. Lachat and J. O. Watson, Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics, Int. J. Num. Meth. Engrg., 10, 991–1005 (1976).MATHCrossRefGoogle Scholar
  14. [14]
    G. E. Blandford, A. R. Ingraffea, and J. A. Liggett, Two dimensional stress intensity factor computations using the boundary element method, Int. J. Num. Meth. Engrg., 17, 387–404 (1981).MATHCrossRefGoogle Scholar
  15. [15]
    T. A. Cruse, An improved boundary-integral equation method for thrree dimensional elastic stress analysis, Comp. & Struct., 4, 741–754, 1974.CrossRefGoogle Scholar
  16. [16]
    T. A. Cruse, Boundary-integral equation method for three dimensional elastic fracture mechanics analysis, U. S. Air Force Report AFOSR-TR-75–0813, Accession No. ADA011660 (1975).Google Scholar
  17. [17]
    T. A. Cruse and G. J. Meyers, Three dimensional fracture mechanics analysis, ASCE Journal of the Structural Division, 103, 309–320 (1977).Google Scholar
  18. [18]
    T. A. Cruse and P. M. Besuner, Residual life prediction for surface cracks in complex structural details, AIAA Journal of Aircraft, 12, 369–375 (1975).CrossRefGoogle Scholar
  19. [19]
    R. S. Barsoum, On the use of isoparametric finite elements in linear fracture mechanics, Int. J. Num. Meth. Engrg., 10, 25–37 (1976).MATHCrossRefGoogle Scholar
  20. [20]
    T. A. Cruse and R. B. Wilson, Boundary-integral equation method for elastic fracture mechanics analysis, U. S. Air Force Report AFOSR-TR-78–0355, Accession No. ADA051992 (1978).Google Scholar
  21. [21]
    T. A. Cruse and R. B. Wilson, Advanced applications of the boundary-integral equation method, Nuclear Engrg. Des., 46, 223–234 (1978).CrossRefGoogle Scholar
  22. [22]
    S. T. Raveendra and T. A. Cruse, BEM analysis of problems of fracture mechanics, in Industrial Applications of Boundary Element Methods, ed. P. K. Banerjee and R. B. Wilson, Elsevier Applied Science, London, 186–204 (1989).Google Scholar
  23. [23]
    C. L. Tan and R. T. Fenner, Elastic fracture mechanics analysis by the boundary integral equation method, Proc. R. Soc. Lond. A, 369, 243–260 (1979).MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    J. Heliot and R. C. Labbens, Results for benchmark problem 1: the surface flaw, Int. J. Fract., 15, R197-R202 (1979).CrossRefGoogle Scholar
  25. [25]
    J. E. Hack, K. S. Chan, and J. W. Cardinal, The prediction of the crack opening behavior of part-through fatigue cracks under the influence of surface residual stresses, Engrg. Fract. Mechs., 21, 75–83 (1985).CrossRefGoogle Scholar
  26. [26]
    I. S. Raju and J. C. Newman, Jr., Three dimensional finite element analysis of finite thickness fracture specimens, NASA Technical Note TN D-8414, Washington, D. C. (1977).Google Scholar
  27. [27]
    T. A. Cruse, Three dimensional elastic surface cracks, in Fracture mechanics: Nineteenth Symposium, ASTM STP 969, American Society for Testing and Materials, Philadelphia, 19–42 (1988).CrossRefGoogle Scholar
  28. [28]
    J. P. Bentham, State of stress at the vertex of a quarter-infinite crack in a half space, Int. J. Solids Struct., 13, 479–492 (1977).CrossRefGoogle Scholar
  29. [29]
    M. D. Snyder and T. A. Cruse, Boundary-integral equation analysis of cracked anisotropic plates, International Journal of Fracture Mechanics, 11, 2, 315–328 (1975).CrossRefGoogle Scholar
  30. [30]
    M. Stern, E. B. Becker, and R. S. Dunham, A contour integral computation of mixed-mode stress intensity factors, Int. J. Fract., 12, 359–368 (1976).Google Scholar
  31. [31]
    T. J. Rudolphi and L. S. Koo, Boundary element solutions of multiple, interacting crack problems in plane elastic media, Engineering Analysis, 2, 211–216 (1985).CrossRefGoogle Scholar
  32. [32]
    T. A. Cruse, Two-dimensional BIE fracture mechanics analysis, A Math. Modeling, 2, 287–293 (1978).MATHCrossRefGoogle Scholar
  33. [33]
    T. A. Cruse and S. T. Raveendra, A general solution procedure for fracture mechnics weight function evaluation based on the boundary element method, Comp. Mechs., 3, 157–166 (1988).MATHCrossRefGoogle Scholar
  34. [34]
    J. L. Swedlow and T. A. Cruse, Formulation of the boundary integral equation for three-dimensional elasto-plastic flow, Int. J. Solids Struct, 7, 1673–1683 (1971).MATHCrossRefGoogle Scholar
  35. [35]
    T. A. Cruse and E. Z. Polch, Elastoplastic BIE analysis of cracked plates and related problems, Parts I and II, Int. J. Numer. Meth. Engrg., 23, Part I, 429–437, Part II, (1986).MATHCrossRefGoogle Scholar
  36. [35a]
    T. A. Cruse and E. Z. Polch, Elastoplastic BIE analysis of cracked plates and related problems, Parts I and II, Int. J. Numer. Meth. Engrg., 23, Part I, Part II, 439–452 (1986).MATHCrossRefGoogle Scholar
  37. [36]
    T. A. Cruse and E. Z. Polch, Application of an elastoplastic boundary-element method to some fracture mechanics problems, Engrg. Frac. Mechs., 23, 1085–1096 (1986).CrossRefGoogle Scholar
  38. [37]
    Q. Huang and T. A. Cruse, On the nonsingular traction-BIE in elasticity, Int. J. Numer. Meth. Engrg., 37, 2041–2072 (1994).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • T. A. Cruse
    • 1
  1. 1.Vanderbilt UniversityNashvilleUSA

Personalised recommendations