Advertisement

A Hybrid Finite Element Method for Cracks

  • J. Zhang
  • N. Katsube

Abstract

Singular elements, such as quarter-point element, were developed in order to deal with stress singularity at the crack tip [1–4]. These elements replace many traditional elements around the crack tip without sacrificing the numerical accuracy. This method, however, requires a post processing procedure to evaluate the stress intensity factors.

Keywords

Stress Intensity Factor Double Cantilever Beam Post Processing Procedure Hybrid Element Fracture Mechanic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. S. Barsoum, On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics, Int. J. Numer. Methods Eng., Vol 10 (1976), pp.25–37.MATHCrossRefGoogle Scholar
  2. [2]
    R. S. Barsoum, Triangular Quarter-Point Elements as Elastic and Perfectly-Plastic Crack Tip Elements, Int. J. Numer. Methods Eng., Vol 11 (1977), pp. 85–98.MATHCrossRefGoogle Scholar
  3. [3]
    R. D. Henshell and K. G. Shaw, Crack Tip Finite Elements are Unnecessary, Int. J. Numer. Methods Eng., Vol 9 (1975), pp. 495–507.MATHCrossRefGoogle Scholar
  4. [4]
    H. D. Hibbit, Some Properties of Singular Isoparametric Elements, Int. J. Numer. Methods Eng., Vol 11 (1977), pp. 180–184.CrossRefGoogle Scholar
  5. [5]
    P. Tong, T. H. H. Pian and S. J. Lasry, A Hybrid-Element Approach to Crack Problems in Plane Elasticity, Int. J. Numer. Methods Eng., Vol 7 (1973), pp. 297–308.MATHCrossRefGoogle Scholar
  6. [6]
    N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff Ltd., Groningen, Holland (1953).Google Scholar
  7. [7]
    M. F. Kanninen and C. H. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York (1985).MATHGoogle Scholar
  8. [8]
    P. Tong and T. H. H. Pian, A Variational Principle and the Convergence of a Finite Element Method Based on Assumed Stress Distribution, Int. J. Solids Structures, Vol 5 (1969), pp. 463–472.MATHCrossRefGoogle Scholar
  9. [9]
    T. H. H. Pian and D. P. Chen, On the Suppression of Zero Energy Deformation Modes, Int. J. Numer. Methods Eng., Vol 19 (1983), pp. 1741–1752.MATHCrossRefGoogle Scholar
  10. [10]
    T. H. H. Pian and C. C. Wu, A Rational Approach for Choosing Stress Terms for Hybrid Finite Formulations, Int. J. Numer. Methods Eng., Vol 26 (1988), pp. 2331–2343.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. Zhang
    • 1
  • N. Katsube
    • 1
  1. 1.Applied Mechanics Program, Boyd LabThe Ohio State UniversityColumbusUSA

Personalised recommendations