Advertisement

Calculation of positron annihilation characteristics in fatigue damaged type 304 stainless steel

  • M. Takimoto
  • A. Kodama
  • G. Itoh
  • Y. Otani
  • M. Nakayama
  • N. Maeda
  • G. Yagawa
Conference paper

Abstract

We have calculated the Doppler broadening profile of positron annihilation in fatigue damaged type 304 stainless steel using the primary methods. The Doppler broadening profile for the non-damaged and the damaged sample was modeled on the profile for the perfect lattice and the point defect (vacancy),respectively. We used the Wigner-Seitz approximation for the perfect lattice, and the jellium model with the Thomas-Fermi approximation and the mixed density approximation for the point defect. The Doppler broadening profile was calculated for the damaged and the non-damaged samples, and the difference was evaluated. The result agrees with the experiment.

Keywords

Point Defect Valence Electron Lattice Defect Positron Annihilation Core Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.N. West, Positron Studies of Condensed Matter, Adv. Phys.,Vol.22 (1973),pp.263CrossRefGoogle Scholar
  2. [2]
    S.C. Sharma, R.M. Johnson and L.M. Diana, Nondestructive Evaluation of Metis by Positron Annihilation Techniques, Novel NDE Methods Mater.,(1983),pp.45Google Scholar
  3. [3]
    W. Brandt, Positron Dynamics in Solids, Appl. Phys.,Vol.5 (1974),pp.1CrossRefGoogle Scholar
  4. [4]
    E. Boronski and R.M. Nieminen, Electron-Positron Density-Functional Theory, Phys. Rev.B,Vol.34 (1986),pp.3820CrossRefGoogle Scholar
  5. [5]
    D.G. Lock and R.N. West, Positron Annihilation in Disordered Binary Alloys, J.Phys.F, Vol.4 (1974), pp.2179CrossRefGoogle Scholar
  6. [6]
    S. Berko and J.S. Plaskett, Correlation of Annihilation Radiation in Oriented Single Metal Crystals, Phys. Rev., Vol. 112 (1958), pp.1877CrossRefGoogle Scholar
  7. [7]
    J. Arponen, P. Hautojärvi, R. Nieminen and E. Pajanne, Charge Density and Positron Annihilation at Lattice Defects in Aluminum, J.Phys.,Vol.F3 (1973),pp.2092CrossRefGoogle Scholar
  8. [8]
    P. Hautojärvi, J. Heinio, M. Manninen and R. Nieminen, The Effect of Microvoid Size on Positron Annihilation Characteristics and Residual Resisitivity in Metals, Phil.Mag.,Vol.35 (1977),pp.973CrossRefGoogle Scholar
  9. [9]
    Private communication with M.Uchida,N.Nakamura and K.Yoshida.Google Scholar
  10. [10]
    M. Uchida, C. Fukuoka and K. Yoshida, Proceedings of the Third Japan International SAMPE Symposium, (1993),pp.2235Google Scholar
  11. [11]
    H. Häkkinen, S. Makinen and M. Manninen, Positron State in Dislocations:Sallow and Deep Traps, Europhs.Lett.,Vol.9(8),(1989),pp.809CrossRefGoogle Scholar
  12. [12]
    H. Häkkinen, S. Makinen and M. Manninen, Edge Dislocation in FCC Metals: Microscopic Calculations of Core Structure and Positron States in Al and Cu, Phys.Rev., Vol.B41, (1990), pp.l2441Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Takimoto
    • 1
  • A. Kodama
    • 1
  • G. Itoh
    • 1
  • Y. Otani
    • 1
  • M. Nakayama
    • 2
  • N. Maeda
    • 3
  • G. Yagawa
    • 4
  1. 1.Fuji Research Institute, Corp.TokyoJapan
  2. 2.Sigma System, Inc.TokyoJapan
  3. 3.Japan Power Engineering and Inspection Corp.TokyoJapan
  4. 4.The University of TokyoTokyoJapan

Personalised recommendations