Domain Optimization Analysis of Continua

  • H. Azegami
  • M. Shimoda
  • Z. C. Wu
Conference paper

Abstract

Since Hadamard [1] showed the differentiability of perturbations of a geometrical domain with a smooth boundary in which an elliptic boundary value problem is defined, many researchers have made clear the theory concerning geometrical domain optimization problems [2] [3] [4]. Theoretical expansion to domains with piecewise smooth boundaries was carried out by Zolésio [5] [6]. He formulated domain perturbations with a smooth transformation, or mapping, of Euclidean space just the same as the original domain. He called the domain perturbation the speed field and this approach the speed method, or the material derivative method.

Keywords

Assure Alphen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hadamard, J., Memoire sur le probléme d’analyse relatif à l’équilibre des plaques élastiques encastrées, Mémoire des savants etragers, Oeuvres de J. Hadamard, CNRS, Paris, (1968), 515–629.Google Scholar
  2. [2]
    Polya, G., Torsion rigidity, principal frequency, electrostatic capacity and symmetrization, Quarterly Appli. Math., 6 (1948), 267–277.MathSciNetMATHGoogle Scholar
  3. [3]
    Horák, V., Inverse Variational Principles of Continuum Mechanics, Rozpravy Ceskoslovenske Akad. Ved., (1969).Google Scholar
  4. [4]
    Pironneau, O., Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York, (1984).MATHCrossRefGoogle Scholar
  5. [5]
    Zolésio, J. P., The material derivative (or speed) method for shape optimization, Optimization of Distributed Parameter Structures, edited by Haug, E. J. and Cea, J., Vol.2, Sijthoff & Noordhoff, Alphen aan den Rijn, (1981), 1089–1151.CrossRefGoogle Scholar
  6. [6]
    Sokolowski, J. and Zolésio, J. P., Introduction to Shape Optimization, Shape Sensitivity Analysis, Springer-Verlag, New York, (1991).Google Scholar
  7. [7]
    Cea, J., Numerical methods of shape optimal design, Optimization of Distributed Parameter Structures, edited by Haug, E. J. and Cea, J., Vol.2, Sijthoff &: Noordhoff, Alphen aan den Rijn, (1981), 1049–1088.CrossRefGoogle Scholar
  8. [8]
    Haug E. J., Choi, K. K. and Komkov, V., Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando, (1986).MATHGoogle Scholar
  9. [9]
    Azegami, H., A Solution to Domain Optimization Problems, Trans, of Jpn. Soc. of Mech. Engs., (in Japanese), 60-574, A (1994), 1479–1486.CrossRefGoogle Scholar
  10. [10]
    Azegami, H., Wu, Z. C., Domain Optimization Analysis in Linear Elastic Problems (Approach Using Traction Method), Trans, of Jpn. Soc. of Mech. Engs., (in Japanese), 60–578, A (1994), 2312–2318.CrossRefGoogle Scholar
  11. [11]
    Shimoda, M., Wu, Z. C., Azegami, H., Sakurai, T., Numerical Method for Domain Optimization Problems Using a General Purpose FEM Code (Traction Method Approach), Trans, of Jpn. Soc. of Mech. Engs., (in Japanese), 60–578, A (1994), 2418–2425.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H. Azegami
    • 1
  • M. Shimoda
    • 2
  • Z. C. Wu
    • 1
  1. 1.Toyohashi University of TechnologyAichJapan
  2. 2.Mitsubishi Motors CorporationOkagakiJapan

Personalised recommendations