Constitutive Modeling of Inelastic Single Crystals for Localization Phenomena

  • Piotr Perzyna
  • Maria K. Duszek-Perzyna
Conference paper


The main objective of the present paper is the constitutive modelling of inelastic single crystals. A constitutive model is developed within the thermodynamic framework of the rate type covariance constitutive structure and takes account of the effects as follows: (i) thermomechanical coupling; (ii) influence of covariant terms, lattice deformations and rotations and plastic spin; (iii) dislocation substructure; (iv) rate sensitivity (viscosity).


Entropy Nickel Covariance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.J. Asaro and J.R. Rice, Strain localization in ductile single crystals. J. Mech. Phys. Solids, Vol.25 (1977), pp.309–338.MATHCrossRefGoogle Scholar
  2. [2]
    H. Balke and Y. Estrin, Micromechanical modelling of shear banding in single crystals. Int. J. Plast, Vol.10 (1994), pp.133–147.MATHCrossRefGoogle Scholar
  3. [3]
    Y.W. Chang and R.J. Asaro, Lattice rotations and shearing in crystals. Arch. Mech., Vol.32 (1980), pp.369–388.Google Scholar
  4. [4]
    Y.W. Chang and R.J. Asaro, An experimental study of shear localization in aluminum-copper single crystals. Acta Metall, Vol.29 (1981), 241–257.CrossRefGoogle Scholar
  5. [5]
    P.S. Follansbee, Metallurgical Applications of Shock — Wave and High-Strain-Rate Phenomena, (eds. L. E. Mun, K. P. Staudhammer and M. A. Meyeres), Marcel Dekker, New York (1986), pp.451 – 480.Google Scholar
  6. [6]
    M.K. Duszek-Perzyna and P. Perzyna, Adiabatic shear band localization in elastic-plastic single crystals. Int. J. Solids Structures, Vol.30 (1993), 61–89.MATHCrossRefGoogle Scholar
  7. [7]
    M.K. Duszek-Perzyna and P. Perzyna, Adiabatic shear band localization of inelastic single crystals in symmetric double slip process. (1995) (In preparation for publication).Google Scholar
  8. [8]
    Y. Estrin and L.P. Kubin, Load strain hardening and nonuniformity of plastic deformation. Acta Metall, Vol.34 (1986), pp.2455–2464.CrossRefGoogle Scholar
  9. [9]
    R. Hill and J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain. J. Mech. Phys. Solids, Vol.20 (1972), pp.401–413.MATHCrossRefGoogle Scholar
  10. [10]
    L.L. Lisiecki, D.R. Nelson and R.J. Asaro, Lattice rotations, necking and localized deformation in f.c.c. single crystals. Scripta Met., Vol.16 (1982), 441–449.CrossRefGoogle Scholar
  11. [11]
    P. Perzyna, Temperature and rate dependent theory of plasticity of crystalline solids. Revue Phys. Appl., Vol.23 (1988), pp.445–459.CrossRefGoogle Scholar
  12. [12]
    P. Perzyna, Constitutive modelling of heterogeneous deformations and localization in inelastic single crystals. (1995) (In preparation for publication).Google Scholar
  13. [13]
    P. Perzyna and K. Korbel, Analysis of the influence of substructure of crystal on the localization phenomenon of plastic deformation. Mechanics of Materials (1995) (Submitted for publication).Google Scholar
  14. [14]
    M.M. Rashid, G.T. Gray and S. Nemat-Nasser, Heterogeneous deformations in copper single crystals at high and low strain rates, Philosophical Magazine A, Vol.65 (1992), pp.707–735.CrossRefGoogle Scholar
  15. [15]
    W.A. Spitzig, Deformation behaviour of nitrogenated Fe-Ti-Mn and Fe-Ti single crystals. Acta Metall., Vol.29 (1981), pp.1359–1377.CrossRefGoogle Scholar
  16. [16]
    C. Teodosiu and F. Sidoroff, A theory of finite elastoplasticity of single crystals. Int. J. Engng. Sci., Vol.14 (1976), pp. 165–176.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Piotr Perzyna
    • 1
  • Maria K. Duszek-Perzyna
    • 1
  1. 1.Centre of Mechanics, Institute of Fundamental Technological ResearchPolish Academy of ScienceWarsawPoland

Personalised recommendations