Additional Cyclic Hardening of metals under Tension-Torsion and Triaxial Tension-Compression Loadings

  • Sylvain Calloch
  • Didier Marquis
Conference paper

Abstract

The additional cyclic hardening due to the nonproportionality of the loading has been shown for the first time by H. Lamba and O. Sidebottom, [1]. These first experimental results have clearly shown that the constitutive models developed from uniaxial experiments were not able to predict the behavior of metals under complex loadings. Since, a great number of experiments have been made in order to understand the hardening and the softening of metals under multiaxial loadings, [2], [3], [4], [5]. Now, a lot of phenomenological models of elasto-plasticity have been proposed for the description of the additional cyclic hardening under complex paths. In all cases, the authors consider that out of phase tension-torsion test leads to the maximum hardening, [6], [7], [8]. This hypothesis is now controversial. On one hand, some experimental data obtained, on a Nickel-Base alloy (waspaloy), with “butterfly” loading path, [9], exhibit a higher hardening than the one corresponding to a 90 deg. out-of-phase path. On the other hand, some simulations made with a micromechanical model due to G. Cailletaud lead for some very complex loading paths to a very high cyclic hardening, again higher than the one corresponding to an out-of-phase path.

Keywords

Eosin Marquis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. S. Lamba, O. M. Sidebottom, “Cyclic Plasticity for Nonproportional Paths, Part I & II”, ASME, Journal of Engineering Materials and Technology, Vol. 100 (1978), pp.96–110.CrossRefGoogle Scholar
  2. [2]
    E. Krempl, H. Lu, “The hardening and Rate Dependant Behavior of Fully Annealed AISI Type 304 Stainless Steel Under Biaxial in phase and Out-of-phase Strain Cycling at Room Temperature”, ASME, Journal of Engineering Materials and Technology, Vol 106 (1984), pp.376–382.CrossRefGoogle Scholar
  3. [3]
    E. Tanaka, S. Murakami, M. Ooka, “Effects of plastic strain amplitudes on Nonproportional Cyclic Plasticity”, Acta. Mech., Vol. 57 (1985), pp.167–192.CrossRefGoogle Scholar
  4. [4]
    E. Tanaka, S. Murakami, M. Ooka, “Effects of strain paths shapes on Nonproportional Cyclic Plasticity”, J. Mech. Phys. Solids, Vol.29 (1986), pp.559–575.Google Scholar
  5. [5]
    A. Benallal, P. Le Gallo, D. Marquis, “An Experimental investigation of Cyclic Hardening of 316 Stainless Steel and of 2024 Aluminium Alloy under Multiaxial Loadings”, Nuclear Engineering and Design, Vol. 114 (1989), pp.345–353.CrossRefGoogle Scholar
  6. [6]
    A. Benallal, D. Marquis, “Constitutive Equations for Nonproportional Cyclic Elasto-viscoplasticity”, ASME, Journal of Engineering Materials and Technology, Vol. 109 (1987), pp.326–336.CrossRefGoogle Scholar
  7. [7]
    S. Doong, S. H. Socie, “Constitutive Modeling of Metals under Nonproportional Cyclic Loading”, ASME, Journal of Engineering Materials and Technology, Vol. 113 (1991), pp.23–30.CrossRefGoogle Scholar
  8. [8]
    A. Abdul-Latif, “Approches multi-echelles pour la description de l’anélasticité avec endommagement”, Thèse de Doctorat (1994), Paris 6.Google Scholar
  9. [9]
    P. Pilvin, “Approches multiechelles pour la prévision du comportement anélastique des métaux”, Thèse de Doctorat (1990), Paris 6.Google Scholar
  10. [10]
    G. Cailletaud, “Une Approche micromécanique phénoménologique du comportement inélastique des métaux”, Thèse de Doctorat d’État (1987), Paris 6.Google Scholar
  11. [11]
    A. Benallal, D. Marquis, “An Experimental Investigation of Cyclic Hardening of 316 SS Under Complex Multiaxial Loadings”, Proc. of the 9th SMIRT conf., paper L 10/3 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Sylvain Calloch
    • 1
  • Didier Marquis
    • 1
  1. 1.Laboratoire de Mécanique et TechnologieCachanFrance

Personalised recommendations