Identification of Viscoplastic Constitutive Equations by Inverse Method

  • G. Lovato
  • F. Moret
  • G. Cailletaud
  • P. Pilvin
Conference paper


The purpose of this paper is to show that the increasing power of the computers allows us to perform inelastic structural computations through an optimization loop. Indeed, the constitutive equations can be identified from specimens involving complex thermomechanical loadings and geometries.


Constitutive Equation Filler Metal Optimization Loop AISI 316L Viscoplastic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Lovato, F. Moret, G. Cailletaud, P. Pilvin, Proc. SOFT94, August 22–26, Karlsruhe Germany, (1994) to be published.Google Scholar
  2. [2]
    H. Burlet, G. Cailletaud, Proc. Eur. Conf. on New Advances in Computational Structural Mechanics, Giens France, (1991), pp. 673–680.Google Scholar
  3. [3]
    R. Kußmaul, D. Munz, Proc. 4th Int. Conf., Joining ceramics, Glass and Metal, Konigswinter Germany, (1993), pp. 152–159.Google Scholar
  4. [4]
    A. Levy, J. Am. Ceram. Soc, Vol. 74 [9] (1991), pp. 2141–2147.CrossRefGoogle Scholar
  5. [5]
    Y. Zhou, F.H. Bao, J.L. Ren, T.H. North, Mat. Sci. Tech., [7], (1991), pp. 863–868.CrossRefGoogle Scholar
  6. [6]
    J.L. Chaboche, Int. J. Plasticity, Vol. 5, (1989) pp. 247–302.MATHCrossRefGoogle Scholar
  7. [7]
    P. Pilvin, Proc. Int. Sem. Mécamat, Besançon France, (1988), pp. 155–164.Google Scholar
  8. [8]
    G. Cailletaud, P. Pilvin, Proc. ISIP’94, Paris France, (1994), pp. 79–86.Google Scholar
  9. [9]
    G. Lovato, “Rhéologie des joints brasés: étude expérimentale et détermination par méthode inverse”, (1995), Thèse de doctorat, Ecole des Mines de Paris.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. Lovato
    • 1
    • 2
  • F. Moret
    • 1
  • G. Cailletaud
    • 2
  • P. Pilvin
    • 2
    • 3
  1. 1.CEA/CEREM/DEM/Section de Génie des MatériauxC.E.N.GGrenoble Cedex 9France
  2. 2.U.R.A. CNRS 866Centre des Matériaux de l’Ecole des Mines de ParisEvry CedexFrance
  3. 3.Université Pierre et Marie CurieParisFrance

Personalised recommendations