Skip to main content

Mechanismus der Gewebe-Angiotensin-II-Bildung im Herzen und neue Befunde zum kardialen Angiotensin-II-System

  • Conference paper
Angiotensin II — Antagonismus

Zusammenfassung

Es ist allgemein anerkannt, daß das Renin-Angiotensin-System nicht nur ein endokrines, sondern auch ein parakrines oder autokrines System ist, da alle seine Komponenten auf Gewebeebene generiert oder aktiviert werden. Technische Fortschritte in der Biochemie und Molekularbiologie führten zur Identifizierung der einzelnen Komponenten des Renin-Angiotensin- Systems in vielen Geweben und zur Aufdeckung ihrer Struktur-Wirkungsbeziehung. Neuere Befunde belegen außerdem nachdrücklich, daß die Ang-II-bildende Gewebesysteme eine bedeutsamere physiologische Rolle als ursprünglich gedacht spielen [34, 36]. Sie tragen zur kardiovaskulären Homöostase bei und sind wahrscheinlich beim „remodeling“ kardiovaskulärer Gewebe beteiligt. Zudem haben Beobachtungen, die im wesentlichen auf dem Einsatz von Medikamenten basieren, welche mit dem Renin-Angiotensin-System interferieren, das Interesse auf der pathophysiologischen Bedeutung lokaler Renin-Angiotensin-Systeme gelenkt. Die erfolgreiche Einführung der ACE-Inhibitoren in die Therapie von Patienten mit kardiovaskulären Erkrankungen weist auf eine bedeutsame Rolle sowohl des systemischen als auch lokaler Renin-Angiotensin-Systeme hin.

Dieses Projekt wird zum Teil unterstützt durch Forschungsstipendien der EG-Kommission (PL930076) und der Alexander von Humboldt-Gesellschaft (IV1-7121)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bachmann S, Peters J, Engler E, Ganten D, Mullins J (1992) Transgenic rats carrying the mouse renin gene-Morphological characterization of a low renin hypertension model. Kidney Int 41:24–36

    PubMed  CAS  Google Scholar 

  2. Baker KM, Singer HA (1988) Identification and characterization of guinea pig angiotensin II ventricular and atrial receptors: Coupling to inositol phosphate production. Circ Res 62:896–904

    PubMed  CAS  Google Scholar 

  3. Baker KM, Chernin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 2593: H324–H332

    Google Scholar 

  4. Baker KM, Dostal DE, Chernin MI, Waland AL, Conrad KM (1991) Angiotensin II-mediated cardiac hypertrophy in adult rats. J Cell Biochem (Suppl 15C):167

    Google Scholar 

  5. Beinlich CJ, White GJ, Baker KM, Morgan HE (1991) Angiotensin II and left ventricular growth in newborn pig heart. J Moll Cell Cardiol 23: 1031–38

    CAS  Google Scholar 

  6. Bonnardeaux JL, Park WK, Regoli D (1977) Effects of angiotensins and catecholamines on the transmembrane potential and isometric force of rabbit isolated atria. Arch Int Pharmacodyn 229:83–94

    PubMed  CAS  Google Scholar 

  7. Brilla CG, Maisch B, Weber KT (1992) Myocardial collagen matrix remodeling in arterial hypertension. Eur Heart J 13: (Suppl D):24–32

    PubMed  CAS  Google Scholar 

  8. Bumpus FM, Catt KJ, Chiu AT et al. (1991) Nomenclature for angiotensin receptors: A report of the nomenclature committee of the Council for High Blood Pressure Research. Hypertension 17:720–721

    PubMed  CAS  Google Scholar 

  9. Bunkenburg B, Schnell C, Baum HP, Cumin F, Wood JM (1991) Prolonged angiotensin II antagonism in spontaneously hypertensive rats — hemodynamic and biochemical consequences. Hypertension 18:278–288

    PubMed  CAS  Google Scholar 

  10. Camargo MJF, von Lutterotti N, Campbell WG, Pecker MS, James GD, Timmermans PB, Laragh JH (1993) Control of blood pressure and end-organ damage in maturing salt-loaded stroke-prone spontaneously hypertensive rats by oral angiotensin II receptor blockade. J Hypertens 11:31–40

    PubMed  CAS  Google Scholar 

  11. Cambien F, Poirer O, Lecerf L et al. (1992) Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359:641–4

    PubMed  CAS  Google Scholar 

  12. Campbell DJ, Habener JF (1986) The angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78:31–39

    PubMed  CAS  Google Scholar 

  13. Caughey GH, Zerweck EH, Vanderslice P (1991) Structure, chromosomal assignment, and deduced amino acid sequence of a human gene for mast cell chymase. J Biol Chem 266:12956–12963

    PubMed  CAS  Google Scholar 

  14. Chang RSL, Lotti VJ, Chen TB, Faust KA (1990) Two angiotensin II binding sites in rat brain revealed using 1251-[Sar1, 1ie8]-angiotensin II and selective non-peptide antagonist. Biochem Biophys Res Commun 171:813–817

    PubMed  CAS  Google Scholar 

  15. Chen S, Chang M, Chiang BM, Cheng K, Lin C (1991) Electromechanical effects of angiotensin in human atrial tissues. J Mol Cell Cardiol 23:483–493

    PubMed  CAS  Google Scholar 

  16. Chiu AT, Herblin WF, McCall DE et al. (1989) Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203

    PubMed  CAS  Google Scholar 

  17. Chiu AT, McCall DE, Aldrich PE, Timmermans PBMWM (1990) [3H] DuP 753, a highly potent and specific radioligand for the angiotensin II-1 receptor subtype. Biochem Biophys Res Commun 172:1195–1202

    PubMed  CAS  Google Scholar 

  18. Cornish KG, Joyner WL, Gilmore JP (1979) Direct evidence for the presence of a different converting enzyme in the hamster cheek pouch. Circ Res 44:540–544

    PubMed  CAS  Google Scholar 

  19. Daemaen MJ, Lombardi DM, Borman FT, Schwartz SM (1991) Angiotensin II induces smooth muscle cell proliferation in the normal an dinjured rat arterial wall. Cric Res 68:450–456

    Google Scholar 

  20. Davis R, Ribner HS, Keung E, Sonnenblick EH, Lejemtel T (1979) Treatment of chronic congestive heart failure with captopril, and oral inhibitor of angiotensinconverting enzyme. N Engl J Med 301:117–121

    PubMed  CAS  Google Scholar 

  21. Dempsey PJ, McCallum ZT, Kent KM, Cooper T (1971) Direct myocardial effects of angiotensin II. Am J Physiol 220:477–481

    PubMed  CAS  Google Scholar 

  22. Doering CW Jalil JE, Janicki IS, Pick R, Aghili S, Abrahams C, Weber KT (1988) Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22:686–695

    PubMed  CAS  Google Scholar 

  23. Dostal DE, Baker KM (1992) Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart: mediation by the AT1 receptor. Am J Hypertens 5:276–280

    PubMed  CAS  Google Scholar 

  24. Drexler H, Lindpaintner K, Lu W, Schieffer B, Ganten D (1989) Transient increase in the expression of cardiac angiotensinogen in a rat model of myocardial infarction and failure. Circulation 80: II–450

    Google Scholar 

  25. Dzau VI (1987) Implication of local angiotensin production in cardiovascular physiology and pharmacology. Am J Cardiol 59:59A–65A

    PubMed  CAS  Google Scholar 

  26. Dzau VI, Ellison KE, Brody T, Ingelfinger J, Pratt R (1987) A comparative study of the distribution of renin and angiotensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120:2334–2338

    PubMed  CAS  Google Scholar 

  27. Dzau VI (1988) Cardiac renin — angiotensin system. Molecular and functional aspects. Am J Med 84:22–27

    PubMed  CAS  Google Scholar 

  28. Dzau VJ, Brody T, Ellison KE, Pratt RE, Ingelfinger IR (1987) Tissue-specific regulation of renin expression in the mouse. Hypertension 9: III-36–III-41

    CAS  Google Scholar 

  29. Dzau VI, Gibbons GH, Pratt RE (1991) Molecular mechanism of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension 18 (Suppl 4): II-100–II-105

    CAS  Google Scholar 

  30. Fabris B, Jackson B, Cubela R, Mendelsohn FAO, Johnston CI (1989) Angiotensin converting enzyme in the rat heart: Studies of its inhibition in vitro and ex vivo. Clin Exp Pharmacol Physiol 16:309–313

    PubMed  CAS  Google Scholar 

  31. Fouad FM, El-Tobgi S, Tarazi RC, Bravo EL, Hart NJ, Shirey EK, Lim J (1984) Captopril in congestive heart failure resistant to other vasodilators. Eur Heart J 5:47–54

    PubMed  CAS  Google Scholar 

  32. Freer RJ, Pappano AJ, Peach MJ, Bing KT, McLean MJ, Vogel S, Sperelakis N (1976) Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac muscle. Circ Res 39:178–183

    PubMed  CAS  Google Scholar 

  33. Fregly MJ, Rossi F, van Bergen P, Brummermann M, Cade JR (1993) Efect of chronic treatment with losartan potassium (DuP 753) on the elevation of blood pressure during chronic exposure of rats to cold. Pharmacology 46:198–205

    PubMed  CAS  Google Scholar 

  34. Fukamizu A, Sugimura K, Takimoto et al. (1993) Chimeric renin — angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem 268:11617–11621

    PubMed  CAS  Google Scholar 

  35. Furuta H, Guo DF, Inagami T (1992) Molecular cloning and sequencing of the gene encoding human angiotensin II type I receptor. Biochem Biophys Res Commun 183:8–13

    PubMed  CAS  Google Scholar 

  36. Ganten D, Wagner J, Zeh K et al. (1992) Species specificity of renin kinetics in transgenic rats harboring the human renin and angiotensinogen genes. Proc Natl Acad Sei USA 89:7806–7810

    CAS  Google Scholar 

  37. Garcia-Sevilla JA, Dubocovich ML, Langer SZ (1985) Interaction between presynaptic facilitatory angiotensin II receptors and inhibitory muscarinic cholinoceptors on 3H-noradrenaline release in the rabbit heart. Naunyn Schmiedebergs Arch Pharmacol 330:9–15

    PubMed  CAS  Google Scholar 

  38. Gondo M, Maruta H, Arakawa K (1989) Direct formation of angiotensin II without renin or converting enzyme in the ischemic dog heart. Jpn Heart J 30:219–229

    PubMed  CAS  Google Scholar 

  39. Goodfriend TL (1986) Physiological effects of angiotensins on the blood vessels and heart. In: Zanchetti A, Tarazi RC (eds) Handbook of Hypertension, vol 8, Elsevier, New York, pp 398–420

    Google Scholar 

  40. Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE (1991) Expression of AT2 receptors in developing rat fetus. J Clin Invest 88:921–933

    PubMed  CAS  Google Scholar 

  41. Hanson SR, Powell JS, Dodson T et al. (1991) Effects of angiotensin-converting enzyme inhibition with cilazpril on intimai hyperplasia in injured arteries and vascular grafts in the baboon. Hypertension 18 (Suppl II): II-70–II-76

    CAS  Google Scholar 

  42. Harrap SB, Davidson R, Connor M et al. (1993) The angiotensin I converting enzyme gene and predisposition to high blood pressure. Hypertension 21: 455–460

    PubMed  CAS  Google Scholar 

  43. Heagerty AM (1991) Angiotensin II: vasoconstrictor or growth factor? J Cardiovasc Pharmacol 18 (Suppl 2): 14–19

    Google Scholar 

  44. Hellmann W, Suzuki F, Ohkubo H, Nakanishi S, Ludwig G, Ganten D (1988) Angiotensinogen gene expression in extrahepatic rat tissues: Application of a solution hybridzation assay. Naunyn Schmiedebergs ARch Pharmacol 338: 327–331

    PubMed  CAS  Google Scholar 

  45. Heyndrickx GR, Boettcher DH, Vatner SF (1976) Effects of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol 231:1579–1587

    PubMed  CAS  Google Scholar 

  46. Hilbert P, Lindpaintner K, Beckmann JS et al. (1991) Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353:521–529

    PubMed  CAS  Google Scholar 

  47. Hilgenfeldt U, Schmind S (1993) Angiotensin II is the mediator of the increase hepatic angiotensinogen synthesis after bilateral nephrectomy. Am J Physiol 265:E414–E418

    PubMed  CAS  Google Scholar 

  48. Hirakata H, Fouad FM, Bumpus FM et al. (1990) Enhanced positive inotropic responses to angiotensin I in isolated cardiomyopathic hamster heart in the presence of Captopril. Circ Res 66:891–899

    PubMed  CAS  Google Scholar 

  49. Hirsh AT, Talsness CE, Schumkert H, Paul M, Dzau VJ (1991) Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475–82

    Google Scholar 

  50. Holubarsch C, Hasenfuss G, Schmidt-Schweda S et al. (1993) Angiotensin I and II exert inotropic effects in atrial but not in ventricular human myocardium: An in vitro study under physiological experimental conditions. Circulation 88: 1228–1237

    PubMed  CAS  Google Scholar 

  51. Ideishi M, Sasaguri M, Ikeda M, Arakawa K (1990) Substrate-dependent angiotensin II formation in the peripheral circulation. Life Sci 46:335–41

    PubMed  CAS  Google Scholar 

  52. Iwai N, Yamano Y, Chaki S et al. (1991) Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression. Biochem Biophys Res Commun 177:299–304

    PubMed  CAS  Google Scholar 

  53. Iwai N, Inagami T (1992) Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Let 298:257–260

    CAS  Google Scholar 

  54. Izumo S, Nadal-Ginard B, Mahdavi V (1988) Proto-oncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 85:339–343

    PubMed  CAS  Google Scholar 

  55. Jacob HJ, Lindpaintner K, Lincoln SE et al. (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224

    PubMed  CAS  Google Scholar 

  56. Jalil JE, Goering CW, Janicki JS, Pick R, Shroff SG, Weber KT (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventrilce. CircRes 64:1041–1050

    PubMed  CAS  Google Scholar 

  57. Jeunemaitre X, Lifton RP, Hunt SC, Williams RR, Lalouel JM (1992) Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet 1:72–75

    PubMed  CAS  Google Scholar 

  58. Jin M, Wilhelm MJ, Lang RE, Unger T, Lindpaintner K, Ganten D (1987) The endogenous tissue renin-angiotensin systems: From molecular biology to therapy. Am J Med 84 (Suppl 3 A): 28–36

    Google Scholar 

  59. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hmakubo T, Inagami T (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phophatase inhibition. J Biol Chem 268: 24543–24546

    PubMed  CAS  Google Scholar 

  60. Kambayashi Y, Bardhan S, Inagami T (1993) Petide growth factors markedly decrease the ligand binding of angiotensin II type 2 receptor in rat cultured vascular smooth muscle cells. Biochem Biophys Res Commun 194:478–482

    PubMed  CAS  Google Scholar 

  61. Kang J, Sumner C, Posner P (1993) Angiotensin II type 2 receptor - mediated changes in potassium currents in cultured neurons. Am J Physiol 265: C607–C616

    PubMed  CAS  Google Scholar 

  62. Kessler-Icekson G, Schlesinger H, Cohen F (1992) Effect of angiotensin II and losartan on protein accumulation in cultured heart myocytes and nonmyocytes. FASEB J 6: A1872

    Google Scholar 

  63. Kinoshita A, Urata H, Bumpus FM, Husain A (1991) Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem 266:19192–19197

    PubMed  CAS  Google Scholar 

  64. Kobayashi M, Furukawa Y, Chiba S (1978) Positive chronotropic and inotropic effects of angiotensin II in the dog heart. Eur J Pharmacol 50:17–25

    PubMed  CAS  Google Scholar 

  65. Koch-Weser J (1965) Nature of the inotropic action of angiotensin on ventricular myocardium. Circ Res 16:230–237

    PubMed  CAS  Google Scholar 

  66. Kunapuli SP, Kumar A (1987) Molecular cloning of human angiotensiogen cDNA and evidence for the presence of its mRNA in the rat heart. Circ Res 60:786–790

    PubMed  CAS  Google Scholar 

  67. Lam JYT, Bourassa MG, Blaine L, Lachapelle C (1990) Can cilazapril reduce the development of atherosclerotic changes in the balloon injured procine carotid arteries? Circulation 82 (Suppl III):III-429

    Google Scholar 

  68. Lanier SM, Malik KU (1982) Attenuation by prostaglandins of the facilitatory effect of angiotensin II at adrenergic prejunctional sites in the isolated Krebs-refused rat heart. Circ Res 51:594–601

    PubMed  CAS  Google Scholar 

  69. Levine TB, Franciosa JA, Cohn JN (1980) Acute and long-term response to an oral converting-enzyme inhibitor, captopril, in cogestive heart failure. Circulaton 62:35–41

    CAS  Google Scholar 

  70. Liang C, Gavras H, Hood W, Renin-angiotensin system inhibition in conscious sodium-depleted dogs. J Clin Invest 61: (Suppl 4): 874–883

    Google Scholar 

  71. Lindpaintner K, Ganten D (1991) The cardiac renin-angiotensin system: an apprisal of present experimental and clinical evidence. Circ Res 68: 905–921

    PubMed  CAS  Google Scholar 

  72. Lindpaintner K, Kin MW, Niedermaier N, Wilhelm MJ, Ganten D (1990) Cardaic angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 67:564–573

    PubMed  CAS  Google Scholar 

  73. Lindpaintner K, Jin MW, Niedermaier N, Wilhelm MJ, Ganten D (1990) Cardiac angiotensinogen and its local activation in the isolated perfused beating heart. Circ Res 67:564–573

    PubMed  CAS  Google Scholar 

  74. Linz W, Henning R, Scholkens BA, Becker RHA (1991) ACE inhibition and angiotensin II receptor antagonism on development and regression of cardiac hypertrophy in rats. Curr Adv ACE Inhib 2:188–190

    Google Scholar 

  75. Linz W, Wiemer G, Scholkens A (1992) ACE-inhibition induces NO-formation in cultured bovine endothelial cells and protects isoalted ischemic rat hearts. J Mol Cell Cardiol 24:909–919

    PubMed  CAS  Google Scholar 

  76. Linz W, Scholkens BA, Han YE (1986) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8 (Suppl 10):S91–99

    PubMed  CAS  Google Scholar 

  77. Lund DD, Twietmeyer AT, Schmid PG, Tomanek RJ (1979) Independent changes in cardiac muscle fiberes and connective tissue in rats with spontaneous hypertension, aortic constriction and hypoxia. Cardiovasc Res 14:39–44

    Google Scholar 

  78. Mento PF, Wilkes BM (1987) Plasma angiotensins and blood pressure during converting enzyme inhibition. Hypertension 9 [Suppl III]:III-42–111–48

    CAS  Google Scholar 

  79. Moravec CS, Schluchter MD, Paranandi L, Czerska B, Stewart RW, Rosenkranz E, Bond M (1990) Inotropic effects of angiotensin II on human cardiac muscle in vitro. Circulation 82:1973–1984

    PubMed  CAS  Google Scholar 

  80. Morton JJ, Beattie EC, McPherson F (1992) Angiotensin II receptor antagonist Losartan has persistent effects on blood pressure in the young spontaneously hypertensive rat: lack of relation to vascular structure. J Vase Res 29:264–269

    CAS  Google Scholar 

  81. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542

    PubMed  CAS  Google Scholar 

  82. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    PubMed  CAS  Google Scholar 

  83. Murphy DD, Shepard J, Smith SGIII, Stephens GA (1992) Effects of the AT1 receptor antagonist losartan on angiotensin II induced hypertrophy of rat cardomyocytes. FASEB J 6: A1261

    Google Scholar 

  84. Nakamura N, Burt DW, Paul M, Dzau VJ (1989) Negative control elements and cAMP responsive sequences in the tissue-specific expression of mouse renin genes. Proc Natl Acad Sci USA 86:56–59

    PubMed  CAS  Google Scholar 

  85. Noda K, Sasaguri M, Ideishi M, Ikeda M, Arakawa K (1993) Role of locally formed angiotensin II and bradykinin in the reduction of myocardial infarct size in dogs. Cardiovasc Res 27:334–340

    PubMed  CAS  Google Scholar 

  86. Nussberger J, Brunner DB, Waeber B, Brunner HR (1986) Specific measurement of angiotensin metabolites and in vitro generated angiotensin II in plasma. Hypertension 8:476–482

    PubMed  CAS  Google Scholar 

  87. Ogg D, Barrett G, Peters J, Whitworth C, Brosnan J, Gleming S, Mullins J (1993) Overexpression of prorenin leads to hypertension in the rat. Abstract of Mouse Molecular Genetics, August 18–22

    Google Scholar 

  88. Ohkubo H, Nakayama K, Tanaka K, Nakanisi S (1986) Tissue distribution f rat angiotensinogen mRNA and structural analysis of its heterogeneity. J Biol Chem 261:319–323

    PubMed  CAS  Google Scholar 

  89. Okunishi H, Oka Y, Shiota N, Kawamoto T, Song K, Miyazaki M (1993) Marked species-difference in the vascular angiotensin II-forming pathways: humans versus rodents. Jpn J Pharmacol 62:207–210

    PubMed  CAS  Google Scholar 

  90. Okunishi H, Miyazaki M, Toda N (1984) Evidence for a putatively new angiotensin II-generating enzyme in the vascular wall. J Hypertens 2:277–284

    PubMed  CAS  Google Scholar 

  91. Paul M, Ganten D (1992) The molecular basis of cardiovascular hypertrophy: the role of the renin-angiotensin system. J Cardiovasc Pharmacol 19 (Suppl 5): S51–S58

    PubMed  CAS  Google Scholar 

  92. Peach MJ (1977) Renin-angiotensin system: Biochemistry and mechanism of action. Physiol Rev 57:313–370

    PubMed  CAS  Google Scholar 

  93. Pinto JEB, Viglion P, Saavedra J (1991) Autoradiographic localization and quantification of rat heart angiotensin converting enzyme. Am J Hypertens 4:321–326

    PubMed  CAS  Google Scholar 

  94. Powell IS, Clozel JP, Müller RKM, Kuhn H, Hefti F, Hosang M, Baumgartner HR (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245:186–188

    PubMed  CAS  Google Scholar 

  95. Pucell AG, Hodges JC, Sen I, Bumpus FM, Husain A (1991) Biochemical properties of the ovarian granulosa cell type 2-angiotensin II receptor. Endocrinology 128:1947–1959

    PubMed  CAS  Google Scholar 

  96. Re R (1987) The myocardial intracellular renin-angiotensin system. Am J Cardiol 59:56A–58A

    PubMed  CAS  Google Scholar 

  97. Re R, Fallon JT, Dzau VJ, Quay SC, Haber E (1982) Renin synthesis by canine aortic smooth muscle cells in culture. Life Sci 30:99–106

    PubMed  CAS  Google Scholar 

  98. Ridker PM, Gaboury CL, Conlin PR, Seely EW, Williams GH, Vaughan DE (1993) Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II, Evidence of a potential interaction between the renin-angiotensin system and fibrionolytic fimction. Circulation 87:1969–1973

    PubMed  CAS  Google Scholar 

  99. Rogers TB (1984) High affinity angiotensin II receptors in myocardial sarcolemmal membranes: characterization of receptors and covalent linkage of 125I-angiotensin II to a membrane component of 116,000 daltons. J Biol Chem 259:8106–8114

    PubMed  CAS  Google Scholar 

  100. Rogg H, Schmid A, de Gasparo M (1990) Identification and characterization of angiotensin II receptor subtypes in rabbit ventricular myocardium. Biochem Biophys Res Commun 173:416–422

    PubMed  CAS  Google Scholar 

  101. Rosenthal J, von Lutterotti N, Thurnreiter M et al. (1987) Suppresion of renin-angiotensin system in the heart of spontaneously hypertensive rats. J Hypertens 5:S23–31

    CAS  Google Scholar 

  102. Ruzicka M, Yuan B, Harmsen E, Leene FHH (1993) The reinin-angiotensin system and volume overload-induced cardiac hypertrophy in rats. Effect of angiotensin converting enzyme inhibitor versus angiotensin II receptor blocker. Circulation 87:921–930

    PubMed  CAS  Google Scholar 

  103. Saito K, Gutkind JS, Saavedra JM (1987) Angiotensin II binding sites in the conduction system of rat hearts. Am J Physiol 253: H1681–22

    Google Scholar 

  104. Samani NJ, Morgan K, Brammar WJ, Swales JD (1987) Detection of renin messenger RNA in rat tissues: Increased sensitivity using an RNAse protection technique. J Hypertens 5: S19–S21

    CAS  Google Scholar 

  105. Sasaki K, Yamano Y, Bardhan S et al. (1991) Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-I receptor. Nature 351:230–233

    PubMed  CAS  Google Scholar 

  106. Sawa H, Tokuchi F, Mochizuki (1992) Expression of the angiotensinogen gene and localization of its protein in the human heart. Circulation 86:138–146

    PubMed  CAS  Google Scholar 

  107. Scheling P, Ganten D, Speck G, Fischer H (1978) Effects of angiotensin II and angiotensin II antagonist saralasin on cell growth and renin in 3T3 and SV3T3 cells. J Cell Physiol 98:503–514

    Google Scholar 

  108. Scheling P, Fischer H, Ganten D (1991) Angiotensin and cell growth: A link to cardiovascular hypertrophy? J Hypertens 9:3–15

    Google Scholar 

  109. Schneider MD, Parker TG (1989) Cardiac myocytes as targets for the action of peptide growth factors. Circulation 80:219–233

    Google Scholar 

  110. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM (1993) Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245–1254

    PubMed  CAS  Google Scholar 

  111. Schorb W, Booz GW, Dostal DE, Chang KC, Baker KM (1992) Angiotensin II receptor mediated growth of cardiac fibroblasts. Circulation 86 (Suppl 1): 1–89

    Google Scholar 

  112. Schunkert H, Dzau VJ, Tang SS, Hirsh AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload ventricular hypertrophy: Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913–1920

    PubMed  CAS  Google Scholar 

  113. Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Chambelan M (1992) Characterization of angiotensin II receptor subtypes in rat heart. Circ Res 71:1482–1489

    PubMed  CAS  Google Scholar 

  114. Shiota N, Okunishi H, Fukamizu A et al. (1993) Activation of two angiotensin-generating system in the ballon-injured artery. FEBS Lett 323:239–242

    PubMed  CAS  Google Scholar 

  115. Skinner SL, Thatcher RL, Whitworth JA, Horowitz JD (1986) Extraction of plasma prorenin by human heart. Lancet 1:995–997

    PubMed  CAS  Google Scholar 

  116. Speth RC, Kim KH (1989) Discrimination of two angiotensin II receptor subtypes with a selective agonist analogue of angiotensin II,p-aminophenylalanine angiotensin II. Biochem Biophys Res Commun 169:997–1006

    Google Scholar 

  117. Sumners C, Tang W, Zelezna B, Raizada MK (1991) Angiotensin II receptor subtypes are coupled with distinct signal transduction mechanisms in cultured neurons and astrocyte glia from rat brain. Proc Natl Acad Sci USA 88: 7567–7571

    PubMed  CAS  Google Scholar 

  118. Suzuki J, Matsubara H, Urakami M, Inada M (1993) Rat angiotensin II (Type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circ Res 73:439–447

    PubMed  CAS  Google Scholar 

  119. Suzuki F, Hellmann W, Paul M, Ludwig G, Lindpaintner K, Ganten D (1988) Renin gene expression in rat tissues: A new quantitative assay method for rat renin mRNA using synthetic cRNA. Clin Exp Hypertens A10:345–359

    Google Scholar 

  120. Thatcher RL, Butty JS, Whitwort JA, Hunt VDU, Shaw PF, Skinner SL, Horowitz JD (1987) Potential functions of plasma prorenin: Regional activation and tissue extraction. Clin Exp Hypertens 9:1425–1434

    Google Scholar 

  121. The multicenter European Research Trial With Cilazapril After Angioplasy to Prevent Transluminal Coronary Obstruction and Restenosis (MERCATOR) Study Group (1992) Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR study: A Multicenter, Randomized, Double-Blind Placebo-Controlled Trial. Circulation 86:100–110

    Google Scholar 

  122. Tsutsumi K, Saavedra JM (1991) Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 261:R209–R216

    PubMed  CAS  Google Scholar 

  123. Unger T, Ganten D, Lang RE (1986) Tissue converting enzyme and cardiovascular actions of converting enzyme inhibitors. J Cardiovasc Pharmacol 8:S75–S81

    PubMed  CAS  Google Scholar 

  124. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1989) Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab 69:54–66

    PubMed  CAS  Google Scholar 

  125. Urata H, Ganten D (1993) Cardiac angiotensin II formation: the angiotensin-I converting enzyme and human chymase. Eur Heart J 14 (Suppl I): 177–182

    PubMed  CAS  Google Scholar 

  126. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883–890

    PubMed  CAS  Google Scholar 

  127. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human hart. J Biol Chem 265:22348–22357

    PubMed  CAS  Google Scholar 

  128. Urata H, Kinoshita A, Perez DM, Misono KS, Bumpus FM, Graham RM, Husain A, Cloning of the gene and cDNA for human heart chymase. J Biol Chem 266:17173–17179

    Google Scholar 

  129. Urata H, Boehm K, Philip A, Kinoshita A, Gabrovsek J, Bumpus FM, Husain A (1993) Human chymase: cellular localization and regional distribution of a major angiotensin II-forming enzyme in the heart. J Clin Invest 91: 1269–1281

    PubMed  CAS  Google Scholar 

  130. Vago T, Bevilacqua M, Conci F et al. (1992) Angiotensin converting enzyme binding sites in human heart and lung: comparison with rat tissues. Br J Pharmacol 107:821–825

    PubMed  CAS  Google Scholar 

  131. Viswanathan M, Tsutsumi K, Correa FMA, Saavedra JM (1991) Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun 179:1361–1367

    PubMed  CAS  Google Scholar 

  132. Wever KT, Clark WA, Janicki JS, Shorff SG (1987) Physiologic versus pathologic hypertrophy and the pressure-overload myocardium. J Cardiovasc Pharmacol 10:S37–S49

    Google Scholar 

  133. Whitebread S, Mele M, Kamber B, de Gasparo M (1989) Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284–291

    PubMed  CAS  Google Scholar 

  134. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO (1991) Localization of angiotensin-converting enzyme in rat heart. Circ Res 68:141–149

    PubMed  CAS  Google Scholar 

  135. Yoshida H, Kakuchi J, Guo DF et al. (1992) Analysis of the evolution of angiotensin II type 1 receptor gene in mammals (mouse, rat, bovine, and human). Biochem Biophys Res Commun 186:1042–1049

    PubMed  CAS  Google Scholar 

  136. Yunge L, Ballak M, Beuzeron J, Lacasse J, Cantin M (1980) Ultrastructural cytochemistry of atrial and ventricular cardiocytes of the bullfrog (Rana catesbeiana): Relationship of specific granules with reninlike activity of the myocardium. Can J Physiol Pharmacol 58:1463–1476

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urata, H. et al. (1996). Mechanismus der Gewebe-Angiotensin-II-Bildung im Herzen und neue Befunde zum kardialen Angiotensin-II-System. In: Philipp, T., Schäfers, R.F. (eds) Angiotensin II — Antagonismus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79645-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79645-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59088-0

  • Online ISBN: 978-3-642-79645-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics