Advertisement

The Basal Cambrian Transition and Cambrian Bio-Events (From Terminal Proterozoic Extinctions to Cambrian Biomeres)

  • Martin D. Brasier

Abstract

Within the Cambrian about six globally traceable extinction events are recognised, of which those across the Mid Botomian through to Toyonian/Amgan are of highest order. All events are associated with facies changes, mostly combined with stepwise extinctions that preferentially affected nearshore and endemic taxa. The events appear to have coincided with changes in climatic and/or oceanographic parameters, such as sea level or fluctuation in oxygen-depleted water masses.

Keywords

Geological Society Mass Extinction Siberian Platform Lower Cambrian Trace Fossil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharon, P. and Liew, T.C., 1992. An assessment of the Precambrian/Cambrian transition events on the basis of carbon isotope records. In: Schidlowski et al. (1992). pp. 212–223.Google Scholar
  2. Aitken, J.D., 1981. Generalizations about Grand Cycles. United States Department of the Interior, Geological Survey, Open-File Report 81–743, 8–14.Google Scholar
  3. Astashkin, V.A. et al., 1991. The Cambrian System on the Siberian Platform; correlation chart and explanating notes. Publication Intern. Union of Geological Sciences 27, 133 pp.Google Scholar
  4. Bath, A.H., 1974. New isotopic data on rocks from the Long Mynd, Shropshire. Journal of the Geological Society 130, 567–574.Google Scholar
  5. Benus, A.P., 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, Eastern Newfoundland). Bulletin of the New York State Museum 463, 8–9.Google Scholar
  6. Bond, G.C., Nickeson, P.A. and Kominz, M.A., 1984. Breakup of a supercontinent between 625 Ma and 555 Ma: new evidence and implications for continental histories. Earth and Planetary Science Letters 70, 325–345.Google Scholar
  7. Bond, G., Kominz, M.A. and Grotzinger, J.P., 1988. Cambro-Ordovician eustasy: evidence from geophysical modelling of subsidence in Cordilleran and Appalachian passive margins. In: Kleinspehn, K.L. and Paola, C. (eds.), New Perspectives in Basin Analysis. pp. 129–160. Springer, Berlin Heidelberg New York.Google Scholar
  8. Boucot, A., 1990. Phanerozoic extinctions: how similar are they to each other? In: Kauffman, E.G. and Walliser, O.H. (eds.), Extinction Events in Earth History. pp. 5–30. Springer, Berlin Heidelberg Berlin.Google Scholar
  9. Bowring, S.A., Grotzinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M. and Kolosov, P., 1993. Calibrating rates of early Cambrian evolution. Science 261, 1293–1298.Google Scholar
  10. Brasier, M.D., 1979. The Cambrian radiation event. In: House, M.R. (ed.), Origin of Major Invertebrate Groups. pp. 103–159. Academic Press, London.Google Scholar
  11. Brasier, M.D., 1980. The Lower Cambrian transgression and glauconite-phosphate facies in western Europe. Journal of the Geological Society 137, 695–703.Google Scholar
  12. Brasier, M.D., 1982. Sea level changes, facies changes and the late Precambrian-early Cambrian evolutionary explosion. Precambrian Research 17, 105–123.Google Scholar
  13. Brasier, M.D., 1984. Microfossils and small shelly fossils from the Lower Cambrian Hyolithes Limestone at Nuneaton, English Midlands. Geological Magazine 121, 229–253.Google Scholar
  14. Brasier, M.D., 1989a. China and the Palaeotethyan Belt (India, Pakistan, Iran, Kazakhstan, and Mongolia). In: Cowie, J.W. and Brasier, M.D. (eds.), The Precambrian-Cambrian boundary. pp. 40–74. Clarendon Press, Oxford.Google Scholar
  15. Brasier, M.D., 1989b. Towards a biostratigraphy of the earliest skeletal biotas. In: Cowie, J.W. and Brasier, M.D. (eds.), The Precambrian-Cambrian boundary. pp. 117–165. Clarendon Press, Oxford.Google Scholar
  16. Brasier, M.D., 1989c. On mass extinction and faunal turnover near the end of the Precambrian. In: Donovan, S.K. (ed.), Mass Extinctions. Processes and Evidence. pp. 73–88. Belhaven Press, London.Google Scholar
  17. Brasier, M.D., 1990. Phosphogenic events and skeletal preservation across the Precambrian-Cambrian boundary interval. In: Notholt, A.J.G. and Jarvis, I. (eds.), Phosphorite Research and Development. Geological Society Special Publication 52, 289–303.Google Scholar
  18. Brasier, M.D., 1992a. Global ocean-atmosphere change across the Precambrian-Cambrian transition. Geological Magazine 129, 161–168.Google Scholar
  19. Brasier, M.D., 1992b. Introduction. Background to the Cambrian Explosion. Journal of the Geological Society 149, 585–587.Google Scholar
  20. Brasier, M.D., 1992c. Palaeoceanography and changes in the biological cycling of phosphorus across the Precambrian-Cambrian boundary. In: Lipps, J.H. and Signor, P.W. (eds.), Origin and Early Evolution of the Metazoa. pp. 483–523. Plenum Press, New York.Google Scholar
  21. Brasier, M.D., 1992d. Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society London 149, 621–629.Google Scholar
  22. Brasier, M.D., 1992e. Towards a carbon isotope stratigraphy of the Cambrian System: potential of the Great Basin succession. In: Hailwood, E.A. and Kidd, R.B. (eds.), High Resolution Stratigraphy. Geological Society Special Publication 70, 341–350.Google Scholar
  23. Brasier, M.D., 1993. Early organic evolution. Terra Nova 5, 310–311.Google Scholar
  24. Brasier, M.D., Perejon, A. and de San José, M.A., 1979. Discovery of an important fossiliferous Precambrian-Cambrian sequence in Spain. Estudios Geologicos 35, 379–383.Google Scholar
  25. Brasier, M.D., Magaritz, M., Corfield, R., Luo Huilin, Wu Xiche, Ouyang Lin, Jiang Zhiwen, B. Hamdi, He Tinggui and Fraser, A.G., 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127, 319–332.Google Scholar
  26. Brasier, M.D., Anderson, M.M. and Corfield, R.M., 1992. Oxygen and carbon isotope stratigraphy of early Cambrian carbonates in southeastern Newfoundland and England. Geological Magazine 129, 265–279.Google Scholar
  27. Brasier, M.D., Khomentovsky, V.V. and Corfield, R.M., 1993. Stable isotopic calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian-Cambrian boundary). Terra Nova 5, 225–232.Google Scholar
  28. Brasier, M.D., Corfield, R.M., Derry, L.A., Rozanov, A.Yu. and Zhuravlev, A.Yu., 1994. Multiple 13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22, 455–458.Google Scholar
  29. Brasier, M.D., Rozanov, A.Yu., Zhuravkev, A.Yu., Corfield, R.M. and Derry, L.A., 1994. A carbon isotope reference scale for the Lower Cambrian succession in Siberia: report of IGCP Project 303. Geological Magazine 131, 767–783.Google Scholar
  30. Burns, S.J. and Matter, A., 1993. Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologicae Helvetiae 86/2, 595–607.Google Scholar
  31. Burrett, C., Long, J. and Stait, B., 1990. Early-Middle Palaeozoic biogeography of Asian terranes derived from Gondwana. In: McKerrow, W.S. and Scotese, C.F. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir 12, 163–174.Google Scholar
  32. Chang, W.T., 1988. The Cambrian System in Eastern Asia. (eds. Shergold, J.H. and Palmer, A.R.). International Union of Geological Sciences, Publication 24.Google Scholar
  33. Cocozza, T. and Gandin, A., 1990. Carbonate deposition during early rifting: the Cambrian of Sardinia and the Triassic-Jurassic of Tuscany, Italy. Special Publications of the International Association of Sedimentologists 9, 9–37.Google Scholar
  34. Compston, W., Williams, I.S., Kirschvink, J.L., Zhang Zichao and Ma Guogan, 1992. Zircon U-Pb ages from the Early Cambrian time-scale. Journal of the Geological Society London 149, 171–184.Google Scholar
  35. Conway Morris, S., 1989. Burgess Shale faunas and the Cambrian explosion. Science 246, 339–346.Google Scholar
  36. Conway Morris, S., 1993. Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36, 593–635.Google Scholar
  37. Cooper, J.A., Jenkins, R.J.F., Compston, W. and Williams, I.S., 1992. Ion-probe dating of a mid-Early Cambrian tuff in South Australia. Journal of the Geological Society London 149, 185–192.Google Scholar
  38. Courjault-Radé, P., Debrenne, F. and Gandin, A., 1992. Palaeogeographic and geodynamic evolution of the Gondwana cotinental margins during the Cambrian. Terra Nova 4, 657–667.Google Scholar
  39. Cowie, J.W. and Brasier, M.D., 1989. The Precambrian-Cambrian boundary. Clarendon Press, Oxford.Google Scholar
  40. Crimes, T.P., 1989. Trace Fossils. In: Cowie and Brasier (1989). pp. 166–185.Google Scholar
  41. Crimes, T.P., 1992a. Changes in the trace fossil biota across the Proterzoic-Cambrian boundary. Journal of the Geological Society London 149, 637–646.Google Scholar
  42. Crimes, T.P., 1992b. The record of trace fossils across the Precambrian-Cambrian boundary. In: Lipps, J.H. and Signor, P.W. (eds.), Origin and Early Evolution of Metazoa. pp. 177–202. Plenum, New York.Google Scholar
  43. Crimes, T.P. and Anderson, M.M., 1985. Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Palaeontology 50, 310–343.Google Scholar
  44. Dalziel, I.W.D., 1991. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19, 598–601.Google Scholar
  45. Dalziel, I.W.D., 1992. Antarctica: a tale of two super-continents? Annual Reviews of Earth and Planetary Science 20, 501–526.Google Scholar
  46. Debrenne, F., 1991. Extinction of the Archaeocyatha. Historical Biology 5, 95–106.Google Scholar
  47. Deny, L.A., Kaufman, A.J. and Jacobsen, S.B., 1992. Sedimentary cycling and environmental change on the late Proterozoic: evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta 56, 1317–1329.Google Scholar
  48. Donnelly, T.H., Shergold, J.H. and Southgate, P.N., 1988. Anomalous geochemical signals from phosphatic middle Cambrian rocks in the southern Georgina Basin, Australia. Sedimentology 35, 549–570.Google Scholar
  49. Ergaliev, G.K., 1981. Upper Cambrian biostratigraphy of the Kyrshababakty section, Maly Karatau, southern Kazakhstan. USGS Open File Report 81–743, 82–88.Google Scholar
  50. Fedonkin, M.A., 1987. Paleoichnology of the Precambrian-Cambrian transition in the Russian Platform and Siberia. In: Landing, E., Narbonne, G.M. and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian Boundary. Bulletin of the New York State Museum 463, 12.Google Scholar
  51. Gould, S.J., 1991. Wonderful Life. Penguin books.Google Scholar
  52. Grant, S.W.F., 1992. Carbon isotopic vital effect and organic diagenesis, Lower Cambrian Forteau Formation, northwest Newfoundland: implications for 13C chemostratigraphy. Geology 20, 243–246.Google Scholar
  53. Hallock, P. and Schlager, W., 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398.Google Scholar
  54. Holland, C.H. (ed.), 1971. Cambrian of the New World. Wiley, London.Google Scholar
  55. Holland, C.H. (ed.), 1974. Cambrian of the British Isles, Norden and Spitsbergen. Wiley, London.Google Scholar
  56. Holser, W.T., 1979. Catastrophic chemical events in the history of the ocean. Nature 267, 403–407.Google Scholar
  57. Holser, W.T., 1984. Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Holland, H.D. and Trendall, A.F. (eds.), Patterns of Change in Earth Evolution. pp. 123–143. Springer, Berlin Heidelberg New York.Google Scholar
  58. Hsü, K.J., Oberhansli, H., Gao, J.Y., Sun Shu, Chen Haihong and Krahenbuhl, U., 1985. ‘Strangelove ocean’ before the Cambrian explosion. Nature 316, 809–811.Google Scholar
  59. Ilyin, A.V., 1990. Proterozoic supercontinent, its latest Precambrian rifting, breakup, dispersal into smaller continents, and subsidence of their margins: evidence from Asia. Geology 18, 1231–1234.Google Scholar
  60. Jenkins, R.J.F., 1989. The ‘supposed terminal Precambrian extinction event’ in relation to the Cnidaria. Memoirs of the Association of Australasian Palaeontologists 8, 307–317.Google Scholar
  61. Kaufman, A., Hayes, J.M., Knoll, A.H. and Germs, G.J.B., 1991. Isotopic composition of carbonates and organic carbon from upper Proterozoic successions in Namibia: stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Research 49, 301–327.Google Scholar
  62. Khomentovsky, V.V., 1986. The Vendian System of Siberia and a standard stratigraphic scale. Geological Magazine 123, 333–348.Google Scholar
  63. Khomentovsky, V.V. and Karlova, G.A., 1993. Biostratigraphy of the Vendian-Cambrian beds and lower Cambrian boundary in Siberia. Geological Magazine 130, 29–45.Google Scholar
  64. Kirschvink, J.L., 1992. Chapter 12.1. A Palaeogeographic Model for Vendian and Cambrian Time. In: Schopf and Klein (1992). pp. 569–581.Google Scholar
  65. Kirschvink, J., Magaritz, M., Ripperdan, R.L., Zhuravlev, A.Yu. and Rozanov, A.Yu., 1991. The Precambrian/Cambrian boundary: Magneto-stratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco and south China. GSA Today 1, 69–71.Google Scholar
  66. Kirschvink, J., Magaritz, M., Ripperdan, R.L., Zhuravlev, A.Yu. and Rozanov, A.Yu., 1991. The Precambrian/Cambrian boundary: Magneto-stratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco and south China. GSA Today 1, 87.Google Scholar
  67. Kirschvink, J., Magaritz, M., Ripperdan, R.L., Zhuravlev, A.Yu. and Rozanov, A.Yu., 1991. The Precambrian/Cambrian boundary: Magneto-stratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco and south China. GSA Today 1, 91.Google Scholar
  68. Knoll, A.H., 1992. Biological and biogeochemical preludes to the Ediacaran Radiation. In: Lipps, J.H. and Signor, P.W. (eds.), Origin and Early Evolution of the Metazoa. pp. 53–86. Plenum, New York.Google Scholar
  69. Knoll, A.H. and Walter, M.R., 1992. Latest Proterozoic Stratigraphy and Earth History. Nature 356, 673–678.Google Scholar
  70. Landing, E., 1992. Lower Cambrian of southeastern Newfoundland: epeirogeny and Lazarus faunas, lithofacies — biofacies linkages, and the myth of a global chronostratigraphy. In: Lipps, J.H. and Signor, P.W. (eds.), Origin and Early Evolution of the Metazoa. pp. 283–310. Plenum, New York.Google Scholar
  71. Landing, E., 1994. Precambrian-Cambrian global stratotype ratified and a new perspective of Cambrian time. Geology 22, 179–182.Google Scholar
  72. Latham, A. and Riding, R., 1990. Fossil evidence for the location of the Precambrian/Cambrian boundary in Morocco. Nature 344, 752–754.Google Scholar
  73. Lindsay, J.F., 1993. Sequence stratigraphic comparisons of the Neoproterozoic and Cambrian sections of the Yangtze Platform, China and Amadeus Basin, Australia. AGSO Record, Canberra, 1993/02.Google Scholar
  74. Lu Yanhao and Lin Huanling, 1981. Zonation of Cambrian faunas in western Zhejiang and their correlation with those in North China, Australia and Sweden. USGS Open-File Report 81–743, 118–120.Google Scholar
  75. Ludvigsen, R. and Westrop, S.R., 1985. Three new Upper Cambrian stages for North America. Geology 13, 139–143.Google Scholar
  76. Magaritz, M., 1989. 13C minima follow extinction events: a clue to faunal radiation. Geology 17, 337–340.Google Scholar
  77. Magaritz, M., Holser, W.T. and Kirschvink, J.L., 1986. Carbon-isotope events across the Precambrian-Cambrian boundary on the Siberian Platform. Nature 320, 258–259.Google Scholar
  78. Mankiewicz, C., 1992. Proterozoic and Early Cambrian Calcareous algae. In: Schopf and Klein (1992). pp. 359–367.Google Scholar
  79. Matthews, S.C. and Cowie, J.W., 1979. Early Cambrian transgression. Journal of the Geological Society London 136, 133–136.Google Scholar
  80. McKerrow, W.S., Scotese, C.R. and Brasier, M.D., 1992. Early Cambrian geological reconstructions. Journal of the Geological Society London 149, 599–606.Google Scholar
  81. McMenamin, M.A.S. and McMenamin, D.L.S., 1989. The Emergence of Animals. The Cambrian Breakthrough. Columbia University Press, New York.Google Scholar
  82. Moczydlowska, M., 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Fossils and Strata 29.Google Scholar
  83. Moczydlowska, M. and Vidal, G., 1988. How old is the Tommotian? Geology 16, 166–168.Google Scholar
  84. Moore, G.W., 1992. Tectonic assembly of South America. Episodes 15, 204–206.Google Scholar
  85. Moores, E.M., 1991. Southwest U.S.-east Antarctic (SWEAT) connection: a hypothesis. Geology 19, 425–428.Google Scholar
  86. Morel, P. and Irving, E.C., 1978. Tentative paleo-continental maps for the early Phanerozoic and Proterozoic. Journal of Geology 86, 535–561.Google Scholar
  87. Myrow, P.M. and Hiscott, R.N., 1993. Depositional history and sequence stratigraphy of the Precambrian-Cambrian boundary stratotype section, Chapel Island Formation, Southeast Newfoundland. In: Geldsetzer et al. (eds.), Event markers in Earth history. Palaeogeography, Palaeoclimatology, Palaeoecology 104, 13–35.Google Scholar
  88. Narbonne, G.M., Myrow, P.M., Landing, E. and Anderson, M.M., 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–1293.Google Scholar
  89. Norford, B.S., 1991. The international working group on the Cambrian-Ordovician boundary: report of progress. Geological Survey of Canada Paper 90–9, 31.Google Scholar
  90. Notholt, A.J.G. and Brasier, M.D., 1986. Proterozoic and Cambrian phosphorites — regional review: Europe. In: Cook, P.J. and Shergold, J.H. (eds.), Phosphate deposits of the world. Volume 1. Proterozoic and Cambrian phosphorites. pp. 91–100. Cambridge University Press.Google Scholar
  91. Odin, G.S. (ed.), 1993. Phanerozoic time scale. Bulletin of Liason and Information, IUGS Subcommission on Geochronology, offset Paris, volume 11.Google Scholar
  92. Opik, A.A., 1961. The geology and palaeontology of the headwaters of the Burke River, Queensland. Commonwealth of Australia Bureau of Mineral Resources, Geology and Geophysics Bulletin 64, 133 pp.Google Scholar
  93. Palmer, A.R., 1965. Biomere- new kind of biostrati-graphic unit. Journal of Palaeontology 39, 149–153.Google Scholar
  94. Palmer, A.R., 1979. Biomere boundaries reexamined. Alcheringa 3, 33–41.Google Scholar
  95. Palmer, A.R., 1981. Subdivision of the Sauk sequence. USGS Open-File Report 81–743, 160–162.Google Scholar
  96. Palmer, A.R., 1982. Biomere boundaries: a possible test case for extraterrestrial perturbation of the biosphere. Geological Society of America Special Paper 190, 469–475.Google Scholar
  97. Palmer, A.R. and Repina, L.N., 1993. Through a glass darkly: taxonomy, phylogeny, and biostratigraphy of the Olenellina. The University of Kansas Paleontological contributions. New Series. Number 3.Google Scholar
  98. Patchett, P.J., Gale, N.H., Goodwin, R. and Humm, M.J., 1980. Rb-Sr whole-rock isochron ages of late Precambrian to Cambrian igneous rocks from southern Britian. Journal of the Geological Society London 137, 649–656.Google Scholar
  99. Pillola, G.L., 1990. Lithologie et trilobites du Cam-brien inférieur du SW de la Sardaigne (Italie): implications paléobiogéographiques. Comptes Rendus de l’Academie des Sciences, Paris, 310 Series II, 321–328.Google Scholar
  100. Piper, J.D.A., 1983. Proterozoic palaeomagnetism and single continent plate tectonics. Geophysical Journal of the Royal Astronomical Society 74, 163–197.Google Scholar
  101. Piper, J.D.A., 1987. Palaeomagnetism and the continental crust. Wiley, New York.Google Scholar
  102. Pokrovsky, B.G. and Missarzhevsky, V.V., 1993. Isotopic correlation of Precambrian and Cambrian of the Siberian Platform. Doklady Akademy Nauk 329, 768–771 [In Russian].Google Scholar
  103. Repina, L.N., 1981. Trilobite biostratigraphy of the Lower Cambrian Stages in Siberia. USGS Open-File Report 81–743, 173–180.Google Scholar
  104. Ripperdan, R.L., Magaritz, M., Nicoll, R.S. and Shergold, J.H., 1992. Simultaneous changes in carbon isotopes, sea level, and conodont biozones within the Cambrian-Ordovician boundary interval at Black mountain, Australia. Geology 20, 1039–1042.Google Scholar
  105. Robison, R.A., Rosova, A.V., Rowell, A.J. and Fletcher, T.P., 1977. Cambrian boundaries and divisions. Lethaia 10, 257–262.Google Scholar
  106. Rowell, A.J. and Brady, M.J., 1975. Brachiopods and biomeres. Brigham Young University Geology Studies 23, 165–180.Google Scholar
  107. Rozanov, A.Yu., 1992. Some problems concerning the Precambrian-Cambrian transition and the Cambrian faunal radiation. Journal of the Geological Society London 149, 593–598.Google Scholar
  108. Rozanov, A.Yu. and Sokolov, B.S. (eds.), 1984. Lower Cambrian stage subdivision. Stratigraphy. Akademii Nauk SSSR, Nauka, Moscow [In Russian].Google Scholar
  109. Runnegar, B., 1982. Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit. Alcheringa 6, 223–239.Google Scholar
  110. Runnegar, B. and Fedonkin, M.A., 1992. Proterozoic metazoan body fossils. In: Schopf T & Klein T (1992). pp. 369–388.Google Scholar
  111. Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M. and Trudinger, P.A., (eds.) 1992. Early Organic Evolution. Springer-Verlag, Berlin.Google Scholar
  112. Schopf, J.W. and Klein, C., 1992. The Proterozoic Biosphere. Cambridge University Press.Google Scholar
  113. Seilacher, A., 1984. Late Precambrian and early Cambrian metazoa: preservation or real extinction? In: Holland, H.D. and Trendall, A.F. (eds.), Patterns of Change in Earth Evolution. pp. 159–168. Springer, Berlin Heidelberg New York.Google Scholar
  114. Sepkoski, J.J. jr., 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Palaeozoic families and mass extinction. Paleobiology 10, 246–267.Google Scholar
  115. Sepkoski, J.J. jr., 1992. Proterozoic-Early Cambrian diversification of metazoans and metaphytes. In: Schopf T and Klein T (1992). pp. 553–561.Google Scholar
  116. Shergold, J.H., 1981. Towards a global late Cambrian agnostid biochronology. USGS Open-File Report 81–743, 208–214.Google Scholar
  117. Signor, P., 1992. Taxonomic diversity and faunal turnover in the early Cambrian: did the most severe mass extinction of the Phanerozoic occur in the Botomian stage? Fifth North American Palaeontological Convention, Abstracts with Programs, p. 272.Google Scholar
  118. Sokolov, B.S. and Fedonkin, M.A., 1984. The Vendian as the terminal system of the Precambrian. Episodes 7, 12–19.Google Scholar
  119. Sokolov, B.S. and Fedonkin, M.A., 1986. Global biological events in the late Precambrian. In: Walliser, O.H. (ed.), Global Bio-Events. Lecture Notes in Earth Sciences 8, 105–108. Springer, Berlin Heidelberg New York.Google Scholar
  120. Stitt, J.H., 1971. Repeating evolutionary patterns in Late Cambrian trilobite biomeres. Journal of Palaeontology 45, 178–181.Google Scholar
  121. Stitt, J.H., 1977. Late Cambrian and earliest Ordovician trilobites, Wichita Mountains area, Oklahoma. Oklahoma Geological Survey Bulletin 124.Google Scholar
  122. Taylor, M.E., 1985. Late Cambrian trilobite mass extinction coincident with oxygen depletion of outer shelf benthic habitats in central Nevada. SEPM Midyear Meeting (Golden, CO), Abstracts v. 2, 88–89.Google Scholar
  123. Tucker, M.E., 1989. Carbon isotopes and Precambrian-Cambrian boundary geology, South Australia: ocean-basin formation, seawater chemistry and organic evolution. Terra Research 1, 573–582.Google Scholar
  124. Tucker, R.D. and Pharaoh, T.C., 1991. U-Pb ages for Late Precambrian igneous rocks in southern Britain. Journal of the Geological Society London 148, 435–443.Google Scholar
  125. Westrop, S.R., 1989. Trilobite mass extinction near the Cambrian-Ordovician boundary in North America. In Donovan, S.K. (ed.), Mass Extinctions. Processes and Evidence. pp. 89–103. Belhaven Press, London.Google Scholar
  126. Wignall, P.B. and Hallam, A., 1992. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeo-climatology, Palaeoecology 93, 21–46.Google Scholar
  127. Wright, A.E., Fairchild, I.J., Moseley, F. and Downie, C., 1993. The Lower Cambrian Wrekin Quartzite and the age of its unconformity on the Ercall Granophyre. Geological Magazine 130, 257–264.Google Scholar
  128. Xiang Liwen and others, 1981. The Stratigraphy of China. Volume 4. The Cambrian System. Geological Publishing House, Beijing [In Chinese].Google Scholar
  129. Xu Daoyi, Yan Zheng, Sun Yiyin, He Jinwen, Zhang Qinwen and Chai Zhifang, 1989. Astrogeological Events in China. Scottish Academic Press, Edinburgh, and Geological Publishing House, Beijing.Google Scholar
  130. Zhuravleva, I.T., Repina, L.N. and Rozanov, A.Yu., 1990. Stage subdivision of the lower Cambrian. In: Repina, L.N. and Zhuravlev, A.J. (eds.), Third International Symposium on the Cambrian System. Abstracts, Novosibirsk. pp. 178–179.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Martin D. Brasier
    • 1
  1. 1.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations