Skip to main content

Global Isotopic Events

  • Chapter

Abstract

More than 60 global “events” have been identified in the isotopic records of 13C, 18O, 34S and 87Sr/86Sr. Over half of these are carbon isotopic events, about equally divided between positive excursions (or a simple rise) and negative excursions (or a fall). The positive excursions generally have been ascribed to “oceanic anoxic events” or similar incidents of gross storage of organic carbon, and negative isotopic events have been related to a catastrophic reduction of primary productivity, but many records suggest a complex origin. Likewise strontium isotopic shifts are generally related to changes in the balance of inputs to the ocean of light strontium from reaction with MOR basalts and of heavy strontium from uplift and erosion of old cratonic terranes. Despite this variety of origins, most of the isotopic events of these elements have potential for worldwide stratigraphic correlation, with resolution that may equal or exceed that of biostratigraphy. Diagenetic distortion of isotopic profiles should be minimized by screening samples with appropriate textural and trace element criteria.

formerly Department of Environmental Sciences and Energy Research, The Weizmann Institute, 76100, Rehovot, Israel

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcala-Herrera, J.A., Grossman, E.L. and Gartner, S., 1992. Nannofossil diversity and equibility and fine-fraction 13C across the Cretaceous/Tertiary boundary at Walvis Ridge Leg 74, South Atlantic. Marine Micropaleo. 20, 77–88.

    Google Scholar 

  • Allan, J.R. and Matthews, R.K., 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology 29, 797–817.

    Google Scholar 

  • Asmeron, Y., Jacobsen, S.B., Knoll, A.H., Butterfield, J.J. and Swett, K., 1991. Strontium isotopic variations of Neoproterozoic seawater: Implications for crustal evolution. Geochim. Cosmochim. Acta 55, 2883–2894.

    Google Scholar 

  • Baker, A.J. and Fallick, A.E., 1989. Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature 337, 352–354.

    Google Scholar 

  • Banner, J.L. and Hanson, G.N., 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 54, 3123–3127.

    Google Scholar 

  • Baud, A., Magaritz, M. and Holser, W.T., 1989. Permian-Triassic of the Tethys: Carbon isotope studies. Geol. Rundsch. 78, 649–677.

    Google Scholar 

  • Berger, W.H. and Vincent, E., 1986. Deep-sea carbonates: Reading the carbon-isotope signal. Geol. Rundsch. 75, 249–269.

    Google Scholar 

  • Bertram, C.J., Elderfield, H., Aldridge, R.J. and Morris, S.C., 1992. 87Sr/86Sr, 143Nd/144Nd and REEs in Silurian phosphatic fossils. Earth Planet. Sci. Lett. 113, 239–249.

    Google Scholar 

  • Bottomley, D.J., Veizer, J., Nielsen, H. and Moczyclowska, J., 1992. Isotopic composition of disseminated sulfur in Precambrian sedimentary rocks. Geochim. Cosmochim. Acta 56, 3311–3322.

    Google Scholar 

  • Bowring, S.A., Grozinger, J.P., Isachsen, C.E., Knoll, A.H., Pelechaty, S.M. and Kolosov, P., 1993. Calibrating rates of Early Cambrian evolution. Science 261, 1293–1298.

    Google Scholar 

  • Brand, U., 1982. The oxygen and carbon isotope composition of Carboniferous fossil components: Sea-water effects. Sedimentology 29, 139–147.

    Google Scholar 

  • Brand, U., 1989; Biogeochemistry of late Paleozoic North American brachiopods and secular variation of seawater composition. Biogeochemistry 7, 159–193.

    Google Scholar 

  • Brand, U., 1991. Strontium isotope diagenesis of biogenic aragonite and low-Mg calcite. Geochim. Cosmochim. Acta 55, 505–513.

    Google Scholar 

  • Brand, U. and Veizer, J., 1980. Chemical diagenesis of a multicomponent carbonate system-1: Trace elements. Jour. Sediment. Petrol. 50, 1219–1236.

    Google Scholar 

  • Brand, U. and Veizer, J., 1981. Chemical diagenesis of a multicomponent carbonate system-2: Stable isotopes. Jour. Sediment. Petrol. 51, 987–997.

    Google Scholar 

  • Brasier, M.D., 1990. Towards a carbon isotope stratigraphy of the Cambrian System: Potential of the Great Basin succession. Geol. Soc. [London] Spec. Publ. 70, 341–350.

    Google Scholar 

  • Brasier, M.D., 1991. Nutrient flux and the evolutionary explosion across the Precambrian-Cambrian boundary interval. Hist. Geol. 5, 85–93.

    Google Scholar 

  • Brasier, M.D., 1992. Global ocean-atmosphere change across the Precambrian-Cambrian transition. Geol Mag. 129, 161–168.

    Google Scholar 

  • Brasier, M.D., Magaritz, M., Corfield, R., Luo H., Wu X., Ouyang L., Jiang Z., Hambdi, B., He T. and Fraser, A.G., 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geol. Mag. 127, 319–332.

    Google Scholar 

  • Brasier, M.D., Anderson, M.M. and Corfield, R.M., 1992. Oxygen and carbon isotope stratigraphy of early Cambrian carbonates in southeastern Newfoundland and England. Geol. Mag. 129, 265–279.

    Google Scholar 

  • Brookins, D.G., 1988. Seawater 87Sr/86Sr for the Late Permian Delaware Basin evaporites (New Mexico, USA). Chem. Geol. 69, 516–519.

    Google Scholar 

  • Buggisch, W., 1991. The global Frasnian-Famennian “Kellwasser Event”. Geol. Rundsch. 80, 49–72.

    Google Scholar 

  • Burke, W.H., Dennison, R.E., Hetherington, E.A., Koepnick, R.B., Nelson, H.F. and Otto, J.B., 1982. Variation in sea water 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–519.

    Google Scholar 

  • Burns, S.J., Haudenschild, U. and Matter, A., 1994. The strontium isotopic composition of carbonates from the Late Precambrian carbonates (560–540 Ma) from Oman. Chem. Geol. Isotope Geosci. Sec. 111, 269–282.

    Google Scholar 

  • Caldeira, C., 1991. Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle. Geology 19, 204–206.

    Google Scholar 

  • Caldeira, C., Rampino, M.R., Volk, T. and Zachos, J.C., 1990. Biogeochemical modeling at mass extinction boundaries: Atmospheric carbon dioxide and ocean alkalinity at the K/T boundary. In: Kauffman, E.G. and Walliser, O.H. (eds.), Extinction Events in Earth History. pp. 333–345. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Capo, R.C. and DePaolo, D.J., 1990. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science 249, 51–55.

    Google Scholar 

  • Cathles, L.M., III, 1990. Scales and effects of fluid flow in the upper crust. Science 248, 323–329.

    Google Scholar 

  • Cerling, T.E., Wang Y. and Quade, J., 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the Late Miocene. Nature 361, 344–345.

    Google Scholar 

  • Chen J., Chu X. and Shao M., 1986. Sulfur isotopes of the Triassic sea. Scient. Geol. Sinica, 1986 (4), 330–338.

    Google Scholar 

  • Chen J.S., Chu X.-L., Shao M.-R. and Zhong H., 1991. Carbon isotope study of the Permian-Triassic boundary sequences in China. Chem. Geol. Isotope Geosci. Sec. 89, 239–251.

    Google Scholar 

  • Chen J.S., Shao M.R., Huo W.G. and Yao Y.Y., 1984. Carbon isotopes of carbonate strata at Permian-Triassic boundary in Changxing, Zhejiang. Scient. Geol. Sinica, 1984 (1), 88–93.

    Google Scholar 

  • Cita, M.B. and McKenzie, J.A., 1986. The terminal Miocene event. Amer. Geophys. Un. Geo-dynamics Ser. 15, 123–140.

    Google Scholar 

  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I., 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28, 199–260.

    Google Scholar 

  • Corfield, R.M., Cartlidge, J.E., Premoli-Silva, I. and Housley, R.A., 1991. Oxygen and carbon isotope stratigraphy of the Palaeogene and Cretaceous limestones in the Bottaccione Gorge and the Contessa Highway sections, Umbria, Italy. Terra Nova 3, 414–422.

    Google Scholar 

  • Corfield, R.M., Siveter, D.J., Cartlidge, J.E. and McKerroe, W.S., 1992. Carbon isotope excursion near the Wenlock-Ludlow (Silurian) boundary in the Anglo-Welsh area. Geology 20, 371–374.

    Google Scholar 

  • Cortecci, B., Reyes, E., Berti, G. and Casati, P., 1981. Sulfur and oxygen isotopes in Italian marine sulfates of Permian and Triassic ages. Chem. Geol. 34, 65–79.

    Google Scholar 

  • Crowley, T.J. and North, G.R., 1991. Paleoclimatology. 339 pp. Oxford University Press.

    Google Scholar 

  • Denison, R.E., Koepnick, R.B., Burke, W.H., Hetherington, E.A. and Fletcher, A., 1994. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chem. Geol. (Isotope Geosci. Sec.) 112, 145–167.

    Google Scholar 

  • Denison, R.E., Koepnick, R.B., Fletcher, A., Howell, M.W. and Callaway, W.S., 1994. Criteria for the retention of original seawater 87Sr/86Sr in ancient shelf sediments. Chem. Geol. (Isotope Geosci. Sec.) 112, 131–143.

    Google Scholar 

  • Derry, L.A. and Jacobsen, S.T., 1988. The Nd and Sr isotopic evolution of Proterozoic seawater. Geophys. Res. Lett. 15, 397–400.

    Google Scholar 

  • Derry, L.A., Keto, L.S., Jacobsen, S.B., Knoll, A.H. and Swett, K., 1989. Strontium isotope variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geoch. Cosmoch. Acta 53, 2331–2339.

    Google Scholar 

  • Deny, L.A., Kaufman, A.J. and Jacobsen, S.B., 1992. Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochim. Cosmochim. Acta 51, 317–1389.

    Google Scholar 

  • Dia, A.N., Cohen, A.S., O’Nions, R.R. and Shackleton, N.J., 1992. Seawater Sr isotope variation of the past 300 kyr and influence of global climate cycles. Nature 356, 786–788.

    Google Scholar 

  • Donnelly, T.H., Shergold, J.H., Southgate, P.N. and Barnes, C.J., 1990. Events leading to global phosphogenesis around the Proterozoic/Cambrian boundary. Geol. Soc. [London] Spec. Publ. 52, 273–287.

    Google Scholar 

  • Ebneth, S., Kürschner, W., Diener, A., Buhl, D. and Veizer, J., 1991. Strontium isotopic evolution of sea water across the Devonian-Carboniferous transition. Geol. Soc. Amer. Abstr. Prog. 23, A111.

    Google Scholar 

  • Elderfield, H., 1986. Strontium isotope stratigraphy. Palaeogeog. Palaeoclimat. Palaeoecol. 57, 71–90.

    Google Scholar 

  • Elderfield, H. and Greaves, M.J., 1982. Rare earth elements in seawater. Nature 296, 214–219.

    Google Scholar 

  • Fallick, A.E. and Hamilton, P.J., 1989. The isotopic geochemistry of ocean waters through time. Trans. Roy. Soc. Edinburgh Earth Sci. 80, 177–181.

    Google Scholar 

  • Faure, G., Assereto, R. and Tremba, E.L., 1978. Strontium isotope composition of marine carbonates of Middle Triassic to Early Jurassic age, Lombardic Alps, Italy. Sedimentology 25, 523–543.

    Google Scholar 

  • Fischer, H. and Gygi, R., 1989. Numerical and bio-chronological time scales correlated at the ammonite sub-zone level: K-Ar, Rb-Sr ages, and Sr, Nd and Pb seawater isotopes in an Oxfordian (Late Jurassic) succession of northern Switzerland. Geol. Soc. Amer. Bull. 101, 1584–1597.

    Google Scholar 

  • Gao, G. and Land, L.S., 1992. Geochemistry of Cambro-Ordovician Arbuckle Limestone, Oklahoma: Implications for diagenetic 18O alteration and secular 13C and 87Sr/86Sr variation. Geochim. Cosmochim. Acta 55, 2911–2920.

    Google Scholar 

  • Geldsetzer, H.H.J., Goodfellow, W.D., McLaren, D.J. and Orchard, M.J., 1987. Sulfur-isotope anomaly associated with the Frasnian-Famenian extinction, Medicine Lake, Alberta, Canada. Geology 15, 393–396.

    Google Scholar 

  • Goodfellow, W.D. and Jonasson, I.R., 1984. Ocean stagnation and ventilation defined by 34S secular trends in pyrite and barite, Selwyn Basin, Yukon. Geology 12, 583–586.

    Google Scholar 

  • Goodfellow, W.D., Geldsetzer, H.H.J., McLaren, D.J., Orchard, M.J. and Klapper, G., 1989. Geo-chemical and isotopic anomalies associated with the Frasnian-Famennian extinction. Hist. Biol. 2, 51–72.

    Google Scholar 

  • Grant, W.F., 1992. Carbon isotope vital effect and organic diagenesis, Lower Cambrian Forteau Formation, northwest Newfoundland: Implications for 13C chemostratigraphy. Geology 20, 243–246.

    Google Scholar 

  • Grossman, E.L., 1994, in press. The carbon and oxygen isotope record during the evolution of Pangea—Carboniferous to Triassic. Geol. Soc. Amer. Spec. Pap. 284.

    Google Scholar 

  • Halas, S., Balinski, A., Gruszczynski, M., Hoffman, A., Malkowski, K. and Narkiewicz, M., 1992. Stable isotope record at the Frasnian/Famennian boundary in southern Poland. Neues Jahrb. Geol. Paläontol. Monatsh. 1992, 129–138.

    Google Scholar 

  • Haq, B.U., Worsely, T.R., Burckle, L.M., Douglas, R.G., Keigwin, L.D., Jr., Opdyke, N.D., Savin, S.M., Sommer, M.W., II, Vincent, E. and Woodruff, F., 1980. Late Miocene carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events. Geology 8, 427–431.

    Google Scholar 

  • Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G. and Smith, D.G., 1990. A Geologic Time Scale. 263 pp. Cambridge University Press.

    Google Scholar 

  • Henderson, G.M., O’Nions, R.K. and Shackleton, N.J., 1993. Sr-isotopes in Quaternary planktonic foraminifera from the Pacific and Indian oceans. Eos 74, 176.

    Google Scholar 

  • Hilbrecht, H. and Hoefs, J., 1986. Geochemieal and palaeontological studies of the 13C anomaly in boreal and north Tethyan Cenomanian-Turonian sediments in Germany and adjacent areas. Palaeogeog. Palaeoclimat. Palaeoecol. 53, 169–189.

    Google Scholar 

  • Hilbrecht, H., Arthur, M.A. and Schlanger, S.O., 1986. The Cenomanian-Turonian boundary event: Sedimentary, faunal and geochemical criteria developed from stratigraphic studies in NW-Germany. In: Walliser, O.H. (ed.), Global Bio-Events. pp. 345–351. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Hilbrecht, H., Hubberten, W.-W. and Oberhänsli, H., 1992. Biogeography of planktonic foraminifera and regional carbon isotope variations: Productivity and water masses in Late Cretaceous Europe. Palaeogeog. Palaeoclimat. Palaeoecol. 92, 407–421.

    Google Scholar 

  • Hodell, D.A., Benson, R.H., Kennett, J.P. and El Bied, K.R., 1989. Stable isotope stratigraphy of latest Miocene sequences in northwest Morocco: The Bou Regreg section. Paleoceanography 4, 467–482.

    Google Scholar 

  • Hodell, D.A., Mueller, P.A., McKenzie, J.A. and Mead, G.A., 1989. Strontium isotope stratigraphy and geochemistry of the Late Neogene ocean. Earth Planet. Sci. Lett. 92, 165–178.

    Google Scholar 

  • Hodell, D.A., Mead, G.A. and Mueller, P.A., 1990. Variation in the strontium isotopic composition of seawater (8 Ma to present): Implications for chemical weathering rates and dissolved fluxes to the ocean. Chem. Geol. 80, 291–307.

    Google Scholar 

  • Hodell, D.A., Mueller, P.A. and Garrido, J.R., 1991. Variations in the strontium isotopic composition of seawater during the Neogene. Geology 19, 24–27.

    Google Scholar 

  • Holland, H.D., 1984. The Chemical Evolution of the Atmosphere and Oceans. 582 pp. Princeton University Press.

    Google Scholar 

  • Holser, W.T., 1977. Catastrophic chemical events in the history of the ocean. Nature 267, 403–408.

    Google Scholar 

  • Holser, W.T., 1979a. Mineralogy of evaporites. Mineral. Soc. Amer. Rev. Mineral. 6, 211–294.

    Google Scholar 

  • Holser, W.T., 1979b. Trace elements and isotopes in evaporites. Mineral. Soc. Amer. Rev. Mineral. 6, 295–346.

    Google Scholar 

  • Holser, W.T. and Kaplan, I.R., 1966. Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1, 93–135.

    Google Scholar 

  • Holser, W.T. and Magaritz, M., 1987. Events near the Permian-Triassic boundary. Mod. Geol. 11, 155–180.

    Google Scholar 

  • Holser, W.T. and Magaritz, M., 1989. Application of isotopes in stratigraphic correlation. Intern. Geol. Cong., 28th, Washington, D.C.

    Google Scholar 

  • Holser, W.T., Kaplan, I.R., Sakai, H. and Zak, I., 1979. Isotope geochemistry of oxygen in the sedimentary sulfate cycle. Chem. Geol. 25, 1–17.

    Google Scholar 

  • Holser, W.T., Magaritz, M. and Clark, D.L., 1986. Carbon-isotope stratigraphic correlations in the Late Permian. Amer. Jour. Sci. 286, 390–402.

    Google Scholar 

  • Holser, W.T., Magaritz, M. and Wright, J., 1986. Chemical and isotopic variations in the world ocean during Phanerozoic time. In: Walliser, O.H. (ed.), Global Bio-Events. pp. 63–74. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Holser, W.T., Schidlowski, M., Mackenzie, F.T. and Maynard, J.B., 1988. Geochemical cycles of carbon and sulfur. In: Gregor, C.B., Garreis, R.M., Mackenzie, F.T. and Maynard, J.B. (eds.), Chemical Cycles in the Evolution of the Earth. pp. 105–173. John Wiley and Sons, New York.

    Google Scholar 

  • Holser, W.T., Schönlaub, H.P., Attrep, M., Jr., Boeckelmann, K., Klein, P., Magaritz, M., Orth, C.J., Fenninger, A., Jenny-Deshusses, D., Kralik, M., Mauritsch, H., Pak, E., Schramm, J.-M., Stattegger, K. and Schmöller, R., 1989. A unique geochemical record at the Permian/Triassic boundary. Nature 337, 39–44.

    Google Scholar 

  • Huang J. and Liu S., 1989. Sulfur isotope distribution of Triassic evaporite and its geological significance in Sichuan Basin. Acta Sedimentologica Sinica 7 (2), 105–110.

    Google Scholar 

  • Hudson, J.D. and Anderson, T.F., 1989. Ocean temperatures and isotopic compositions through time. Trans. Roy. Soc. Edinburgh Earth Sci. 80, 183–192.

    Google Scholar 

  • Hurley, N.F. and Lohmann, K.C., 1990. Diagenesis of Devonian reefal carbonates in the Oscar Range, Canning River Basin, Australia. Jour. Sed. Petrol. 59, 127–146.

    Google Scholar 

  • Jarvis, I., Carson, G., Hart, M., Leary, P. and Tocher, B., 1988. The Cenomanian-Turonian (Late Cretaceous) anoxic event in SW England: Evidence from Hooken Cliffs near Beer, S. Devon. Newsl. Stratig. 18, 147–164.

    Google Scholar 

  • Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A., Home, D. and Rosenfeld, A., 1988. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) Oceanic Anoxic Event. Cretaceous Res. 9, 3–103.

    Google Scholar 

  • Javoy, M. and Courtillot, V., 1989. Intense acidic volcanism at the Cretaceous-Tertiary boundary. Earth Planet. Sci. Lett. 94, 409–416.

    Google Scholar 

  • Jenkins, H.C. and Clayton, C.J., 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87–106.

    Google Scholar 

  • Joachimski, M.M. and Buggisch, W., 1993. Anoxic events in the Late Frasnian--Causes of the Frasnian-Famennian faunal crisis? Geology 21, 675–678.

    Google Scholar 

  • Jux, U. and Steuber, T., 1992. Ccarb- und Corg-Iso-topenverhältnisse in der silurischen Schichtenfolge Gotlands als Hinweise auf Meeresspiegelschwankungen und Krustenbewegungen. Neues Jahrb. Geol. Paläontol. Monatsh. 1992, 385–413.

    Google Scholar 

  • Kaufman, A.J., Hayes, J.N., Knoll, A.H. and Germs, G.J.B., 1991. Isotopic compositions of carbonates and organic carbon from Upper Proterozoic successions in Namibia: Stratigraphie variation and the effects of diagenesis and metamorphism. Precambrian Res. 49, 301–327.

    Google Scholar 

  • Kaufman, A.J. and Knoll, A.M., in press. Neo-proterozoic variations in the C-isotope composition of seawater: Stratigraphie and biogeochemical implications.

    Google Scholar 

  • Kaufman, E.E., 1986. High resolution event stratigraphy: Regional and global Cretaceous bio-events. In: Walliser, O.H. (ed.), Global Bio-Events. pp. 279–335. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Kennett, J.P. and Stott, L.D., 1990. Proteus and proto-Oceanus: Ancestral Paleogene oceans as revealed from Antarctic stable isotopic results, ODP Leg 113. Proc. Ocean Drilling Prog. Sci. Results 113, 865–880.

    Google Scholar 

  • Kennett, J.P. and Stott, L.D., 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353, 225–229.

    Google Scholar 

  • Kirschvink, J.L., Magaritz, M., Ripperdan, R.L., Shuravlev, A.Yu. and Rozanov, A.Yu., 1991. The Precambrian/Cambrian boundary. Magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco and South China. GSA Today 1, 69–91.

    Google Scholar 

  • Knoll, A.H., Hayes, J.M., Kaufman, A.J., Swett, F. and Lambert, T.B., 1986. Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature 321, 832–838.

    Google Scholar 

  • Koch, P.L., Zachos, J.C. and Gingerich, P.D., 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature 358, 319–322.

    Google Scholar 

  • Koepnick, R.B., Denison, R.E., Burke, W.H., Hetherington, E.A., Nelson, H.F., Otto, J.B. and Waite, L.E., 1985. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous. Chem. Geol. Isotope Geosci. Sec. 58, 55–81.

    Google Scholar 

  • Kramm, U. and Wedepohl, K.H., 1991. The isotopic composition of strontium and sulfur in seawater of Late Permian (Zechstein) age. Chem. Geol. 90, 253–262.

    Google Scholar 

  • Kump, L.R., 1991. Interpreting carbon-isotope excursions: Strangelove oceans. Geology 19, 299–302.

    Google Scholar 

  • Kürschner, W., Becker, R.T., Buhl, D. and Veizer, J., 1992. Strontium isotopes on conodonts: Devonian-Carboniferous transition, the northern Rhenish Slate Mountains, Germany. Ann. Soc. Geol. Belg. 115, 595–621.

    Google Scholar 

  • Kürschner, W., Ebneth, S., Veizer, J. and Buhl, D., 1992. Variations of strontium isotopes in Paleozoic conodonts. Profil 1, 29.

    Google Scholar 

  • Leary, P.N., Carson, G.A., Cooper, M.R.E., Hart, M.B., Horne, D., Jarvis, I., Rosenfeld, A. and Tocher, B.A., 1989. The biotic response to the Late Cenomanian oceanic anoxic event: Integrated evidence from Dover, SE England. Jour. Geol. Soc. London 146, 311–317.

    Google Scholar 

  • Lohmann, K.C. and Walker, J.C.G., 1989. The 18O record of Phanerozoic abiotic marine calcite cements. Geophys. Res. Lett. 16, 319–322.

    Google Scholar 

  • Long, D.G.F., 1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Anticosti Island, Quebec. Palaeogeog. Palaeoclimat. Palaeoecol. 104, 49–59.

    Google Scholar 

  • Loutit, T.S., Kennett, J.P. and Savin, S.M., 1983. Miocene equatorial and southwest Pacific paleoceanography from stable isotope evidence. Marine Micropaleo. 8, 215–233.

    Google Scholar 

  • Loutit, T.S., Pisias, N.G. and Kennett, J.P., 1983. Pacific Miocene carbon isotope stratigraphy using benthic foraminifera. Earth Planet. Sci. Lett. 66, 48–62.

    Google Scholar 

  • Macdougall, J.D., 1988. Seawater strontium isotopes, acid rain, and the Cretaceous-Tertiary boundary. Science 239, 485–487.

    Google Scholar 

  • Magaritz, M., 1989. 13C minima follow extinction events: A clue to faunal radiation. Geology 17, 337–340.

    Google Scholar 

  • Magaritz, M. and Holser, W.T., 1990. Carbon isotope shifts in Pennsylvanian seas. Amer. Jour. Sci. 290, 977–994.

    Google Scholar 

  • Magaritz, M. and Turner, P., 1982. Carbon cycle changes of the Zechstein Sea: Isotopic transition zone in the Marl Slate. Nature 297, 389–390.

    Google Scholar 

  • Magaritz, M., Anderson, R.Y., Holser, W.T., Saltzman, E.S. and Garber, J., 1983. Isotope shifts in the Late Permian of the Delaware Basin, Texas, precisely timed by varved sediments. Earth Planet. Sci. Lett. 66, 111–124.

    Google Scholar 

  • Magaritz, M., Holser, W.T. and Kirschvink, J.L., 1986. Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature 320, 258–259.

    Google Scholar 

  • Magaritz, M., Bär, R., Baud, A. and Holser, W.T., 1988. The carbon isotope shift at the Permian/ Triassic boundary in the southern Alps is gradual. Nature 331, 337–339.

    Google Scholar 

  • Magaritz, M., Kirschvink, J.L., Latham, A.J., Zhuravlev, A.Yu. and Rozanov, A.Yu., 1991. Precambrian/Cambrian boundary problem: Carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology 19, 847–850.

    Google Scholar 

  • Magaritz, M., Benjamin, C., Keller, G. and Moshkovitz, S., 1992. Early diagenetic isotopic signal at the Cretaceous/Tertiary boundary, Israel. Palaeogeog. Palaeoclimat. Palaeoecol. 91, 291–304.

    Google Scholar 

  • Magaritz, M., Krishnamurthy, R.V. and Holser, W.T., 1992. Parallel trends in organic and inorganic carbon isotopes across the Permian/Triassic boundary. Amer. Jour. Sci. 292, 727–739.

    Google Scholar 

  • Margolis, S.V., Kroopnick, P.J., Goodney, D.E., Dudley, W.C. and Mahoney, M.E., 1975. Oxygen and carbon isotopes from calcareous nannofossils as paleoceanographic indicators. Science 189, 555–557.

    Google Scholar 

  • Margolis, S.V., Mount, J.F., Doehne, E., Showers, W. and Ward, P., 1987. The Cretaceous/Tertiary boundary carbon and oxygen isotope stratigraphy, diagenesis, and paleoceanography at Zumaya, Spain. Paleoceanography 2, 361–377.

    Google Scholar 

  • Marshall, J.D., 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol. Mag. 129, 143–160.

    Google Scholar 

  • Marshall, J.D. and Middleton, P.D., 1990. Changes in marine isotopic composition and Late Ordovician glaciation. Jour. Geol. Soc. London 147, 1–4.

    Google Scholar 

  • Martin, E.E. and Macdougall, J.D., 1991. Seawater Sr isotopes at the Cretaceous/Tertiary boundary. Earth Planet. Sci. Lett. 104, 166–180.

    Google Scholar 

  • McArthur, J.M., 1991. Strontium-isotope stratigraphy. Geol. Today 7 (6), i–iii.

    Google Scholar 

  • McArthur, J.M., Burnett, J. and Hancock, J.M., 1992. Strontium isotopes at the K/T boundary. Nature 355, 28.

    Google Scholar 

  • McGhee, F.R., Jr., Orth, C.J., Quintana, L.R., Gilmore, J.S. and Olson, E. J., 1986. Geochemical analyses of the Late Devonian “Kellwasser Event” stratigraphic horizon at Steinbruch Schmidt. In: Walliser, O.H. (ed.), Global Bio-Events. pp. 219–224. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Middleton, P.D., Marshall, J.D. and Brenchley, P.J., 1991. Evidence for isotopic change associated with Late Ordovician glaciation, from brachiopods and marine cements of central Sweden. Geol. Surv. Canada Pap. 90–9, 313–321.

    Google Scholar 

  • Miller, K.G. and Fairbanks, R.G., 1985. Oligocene and Miocene global carbon isotope cycles and abyssal circulation changes. Amer. Geophys. Un. Geophys. Monogr. 32, 469–486.

    Google Scholar 

  • Miller, K.G., Fairbanks, R.G. and Mountain, G.S. 1987. Tertiary oxygen isotope synthesis, sea level history and continental margin erosion. Paleoceanography 2, 1–19.

    Google Scholar 

  • Miller, K.G., Feigenson, C.D., Kent, D.V. and Olsson, R.K., 1988. Upper Eocene to Oligocene isotope (87Sr/86Sr, 18O, 13C) standard section, Deep Sea Drilling Project Site 522. Paleoceanography 3, 223–233.

    Google Scholar 

  • Miller, K.G., Wright, J.D. and Fairbanks, R.G., 1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. Jour. Geophys. Res. 96(B4), 6829–6848.

    Google Scholar 

  • Morante, R., 1993. Determining the Permian/Triassic boundary in Australia through C-isotope chemostratigraphy. In: Flood, P.G. and Aitchison, J.C. (eds.), New England Orogen, Eastern Australia. pp. 293–298. Department of Geology and Geophysics, University of New England, Armidale, Australia.

    Google Scholar 

  • Morante, R., Veevers, J.J., Andrew, A.S. and Hamilton, P.J., 1994. Determination of the Permian-Triassic boundary in Australia from carbon isotope stratigraphy. APEA Jour. 34, 330–336.

    Google Scholar 

  • Morgan, M.E., Kingston, J.D. and Marino, B.D., 1994. Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature 367, 162–165.

    Google Scholar 

  • Muehlenbachs, K., 1986. Alteration of the ocean crust and the 18O history of sea water. Mineral. Soc. Amer. Rev. Mineral. 12, 425–444.

    Google Scholar 

  • Nelson, B.K., MacLeod, G.K. and Ward, P.D., 1991. Rapid change in strontium isotopic composition of sea water before the Cretaceous/Tertiary boundary. Nature 351, 644–647.

    Google Scholar 

  • Nishioka, S., Arakawa, Y. and Kobayashi, Y., 1991. Strontium isotope profile of Carboniferous-Permian Akiyoshi Limestone in southwest Japan. Geochem. Jour. 25, 137–146.

    Google Scholar 

  • Oberhänsli, H., Hsü, K.J., Piasecki, S. and Weissert, H., 1989. Permian-Triassic carbon isotope anomaly in Greenland and in the southern Alps. Hist. Biol. 2, 37–49.

    Google Scholar 

  • Oberhänsli, H. and von Salis Perch-Nielsen, A.K., 1990. The Paleocene 13C event: Was it due to changes in the storage rate of terrestrial biomass? Veröff. Übersee-Mus. A10, 99–112.

    Google Scholar 

  • Pak, D.K. and Miller, K.G., 1992. Paleocene to Eocene benthic foraminiferal isotopes and assemblages: Implications for deepwater circulation. Paleoceanography 7, 405–422.

    Google Scholar 

  • Palmer, M.R. and Edmond, J.M., 1989. The strontium isotope budget of the ocean. Earth Planet. Sci. Lett. 92, 11–26.

    Google Scholar 

  • Pawellek, F. and Veizer, J., 1992. C- and O-isotopes in Middle Devonian brachiopod shells. Presented at 82nd Annual Meeting of the Geologische Vereinigung, February 26–29, 1992, Stuttgart, Germany.

    Google Scholar 

  • Paytan, A., Kastner, M., Martin, E.E., Macdougall, J.D. and Herbert, T., 1993. Marine barite as a monitor of seawater strontium isotope composition. Nature 366, 445–449.

    Google Scholar 

  • Peryt, D. and Wyrwicka, K., 1991. The Cenomanian-Turonian Oceanic Anoxic Event in SE Poland. Cret. Res. 12, 65–80.

    Google Scholar 

  • Peryt, D., Wyrwicka, K., Orth, C.J., Attrep, M., Jr. and Quintana, L.R., 1992. The Cenomanian-Turonian boundary interval in central Poland. Fifth International Conference of Bio-Events, Abstracts, p. 88.

    Google Scholar 

  • Pingitore, N.R., Jr., Lytle, F.W., Davies, B.M., Eastman, M.P., Eller, P.G. and Larson, E.M., 1992. Mode of incorporation of Sr2+ in calcite: Determination by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 58, 1531–1538.

    Google Scholar 

  • Playford, P.E., McLaren, D.J., Orth, C.J., Gilmore, J.S. and Goodfellow, W.D., 1984. Iridium anomaly in the Upper Devonian of the Canning Basin, Western Australia. Science 226, 437–439.

    Google Scholar 

  • Popp, B.N., Anderson, T.F. and Sandberg, P.A., 1986. Brachiopods as indicators of original isotopic composition in some Paleozoic limestones. Geol. Soc. Amer. Bull. 97, 1262–1269.

    Google Scholar 

  • Popp, B.N., Podosek, F.A., Brannon, J.C., Anderson, T.F. and Pier, J., 1986. 87Sr/86Sr ratios in Permo-Carboniferous sea water from the analyses of well-preserved brachiopod shells. Geochim. Cosmochim. Acta 50, 1321–1328.

    Google Scholar 

  • Railsback, L.B., 1990. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotope record. Geochim. Cosmochim. Acta 54, 1501–1509.

    Google Scholar 

  • Railsback, L.B., Anderson, T.F., Ackerly, S.C. and Cisne, J.L., 1989. Paleoceanographic modeling of temperature-salinity profiles from stable isotopic data. Paleoceanography 4, 585–591.

    Google Scholar 

  • Rau, G.H., Takahashi, T. and Des Marais, D.J., 1989. Latitudinal variations in plankton 13C: Implications for CO2 and productivity in past oceans. Nature 341, 516–518.

    Google Scholar 

  • Raymo, M.E. and Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122.

    Google Scholar 

  • Renard, M., 1986. Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Mar. Micropaleo. 10, 117–164.

    Google Scholar 

  • Richardson, S.M. and Hansen, K.W., 1991. Stable isotopes in the sulfate evaporites from southeastern Iowa, U.S.A.: Indications of postdepositional change. Chem. Geol. 90, 79–90.

    Google Scholar 

  • Richter, F.M. and Turekian, K.K., 1993. Simple models for the geochemical response of the ocean to climatic and tectonic forcing. Earth Planet Sci. Lett. 119, 1212–1231.

    Google Scholar 

  • Richter, F.M., Rowley, D.B. and DePaolo, D.J., 1992. Sr isotope evolution of seawater: The role of tectonics. Earth Planet. Sci. Lett. 109, 11–23.

    Google Scholar 

  • Ripperdan, R.L., 1994. Global variations in carbon isotope composition during the latest Neoproterozoic and earliest Cambrian. Ann. Rev. Earth Planet. Sci. 22, 385–417.

    Google Scholar 

  • Ripperdan, R.L., Magaritz, M., Nicoll, R.S. and Shergold, J.H., 1992. Simultaneous changes in carbon isotopes, sealevel and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology 20, 1039–1042.

    Google Scholar 

  • Ripperdan, R.L., Magaritz, M. and Kirschvink, J.L. 1993. Carbon isotope and magnetic polarity evidence for non-depositional events within the Cambrian-Ordovician boundary section at Dayangchga, Jilin Province, China. Geol. Mag. 130, 443–452.

    Google Scholar 

  • Rush, P.F. and Chafetz, H.S., 1990. Fabric-retentive, non-luminescent brachiopods as indicators of original 13C and 18O composition: A test. J. Sed. Petrol. 60, 968–981.

    Google Scholar 

  • Savin, S.M., Douglas, R.G., Keller, G., Killingsley, J.S., Shaughnessy, L., Sommer, M.Q., Vincent, D. and Woodruff, F., 1981. Miocene benthic foraminifera isotope records: A synthesis. Marine Micropaleo. 6, 423–450.

    Google Scholar 

  • Schidlowski, M. and Aharon, P., 1992. Carbon cycle and carbon isotope record: Geochemical impact of life over 3.5 Ga of Earth history. In: Schidlowski, M. et al. (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources. pp. 147–175. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Schindler, E., 1990. Die Kellwasser-Krise (hohe Frasne-Stufe, Ober-Devon). Göttinger Arb. Geol. Paläontol. 46, 115 p.

    Google Scholar 

  • Schlanger, S.O., Arthur, M.A., Jenkyns, H.C. and Scholle, P.A., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic carbon-rich beds and the marine 13C excursion. Geol. Soc. Spec. Publ. 26, 371–399.

    Google Scholar 

  • Scholle, P.A. and Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. Amer. Ass. Petrol. Geol. Bull. 64, 67–87.

    Google Scholar 

  • Scholle, P.A., Stemmerick, L. and Harpøth, O., 1990. Origin of major karst-associated celestite mineralization in Karstryggen, central East Greenland. J. Sed. Petrol. 60, 397–410.

    Google Scholar 

  • Scholle, P.A., Stemmerick, L. and Ulmer, D.S., 1991. Diagenetic history and hydrocarbon potential of Upper Permian carbonate buildups, Wegener Halvø area, Jameson Land Basin, East Greenland. Amer. Assoc. Petrol. Geol. Bull. 75, 701–725.

    Google Scholar 

  • Shackleton, N.J., 1985. Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere. Amer. Geophys. Un. Geophys. Monogr. 32, 412–417.

    Google Scholar 

  • Shackleton, N.J., 1986. Paleogene stable isotope events. Palaeogeog. Palaeoclimat. Palaeoecol. 57, 91–102.

    Google Scholar 

  • Shackleton, N.J., 1987. The carbon isotope record of the Cenozoic history of organic carbon burial and of oxygen in the ocean and atmosphere. Geol. Soc. Spec. Publ. 26, 423–444.

    Google Scholar 

  • Shackleton, N.J., Hall, M.A. and Boersma, A., 1984; Oxygen and carbon isotopic data from Leg 74 foraminifera. Init. Rep. Deep Sea Drill. Proj. 74, 599–612.

    Google Scholar 

  • Shackleton, N.J. and Kennett, J.P., 1975. Paleo-temperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Init. Rep. Deep Sea Drill. Proj. 29, 743–755.

    Google Scholar 

  • Stott, L.D., 1992. Higher temperatures and lower oceanic pCO2: A climatic enigma at the end of the Paleocene Epoch. Paleoceanography 7, 395–404.

    Google Scholar 

  • Stott, L.D. and Kennett, J.P., 1989. New constraints on early Tertiary paleoproductivity from carbon isotopes in foraminifera. Nature 342, 526–529.

    Google Scholar 

  • Strauss, H., 1993. The sulfur isotopic record of Precambrian sulfate: New data and a critical evaluation of the existing record. Precamb. Res. 63, 225–246.

    Google Scholar 

  • Strauss, H., Bengston, F., Myrow, P.M. and Vidal, G., 1992. Stable isotope geochemistry and palyno-logy of the Late Precambrian to Early Cambrian sequence in Newfoundland. Can. J. Earth Sci. 29, 1662–1673.

    Google Scholar 

  • Thomas, E., 1992. Cenozoic deep-sea circulation: Evidence from deep-sea benthic foraminifera. Amer. Geophys. Union Antarctic Res. Ser. 56, 141–165.

    Google Scholar 

  • Veizer, J., 1983. Chemical diagenesis of carbonates: Theory and application. In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J. and Land, L.S.. Society of Economic Paleontologists and Mineralogists, Short Course no. 10, p. 3.1–3.100.

    Google Scholar 

  • Veizer, J. 1989. Strontium isotopes in seawater through time. Ann. Rev. Earth Planet. Sci. 17, 141–167.

    Google Scholar 

  • Veizer, J., Compston, W., Clauer, N. and Schidlowski, M., 1983. 87Sr/86Sr in Late Proterozoic carbonates: Evidence for a “mantle event” at 900 Ma ago. Geochim. Cosmochim. Acta 47, 295–302.

    Google Scholar 

  • Veizer, J., Fritz, P. and Jones, B., 1986. Geochemistry of brachiopods: Oxygen and carbon isotopic records of Paleozoic oceans. Geochim. Cosmochim. Acta 50, 1679–1696.

    Google Scholar 

  • Vincent, E. and Berger, W.M., 1985. Carbon dioxide and polar cooling in the Miocene: The Monterey hypothesis. Amer. Geophys. Un. Geophys. Monogr. 32, 455–468.

    Google Scholar 

  • Vincent, E., Killingsley, K.S. and Berger, W.M., 1985. Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean. Geol. Soc. Amer. Mem. 163, 103–130.

    Google Scholar 

  • Wadleigh, M.A. and Veizer, J., 1982. 18O/16O and 13C/12C in lower Paleozoic articulate brachiopods: Implications for the isotopic composition of seawater. Geochim. Cosmochim. Acta 56, 431–443.

    Google Scholar 

  • Wang, K., Chatterton, B.D.E., Attrep, M., Jr. and Orth, C.J., 1993. Late Ordovician mass extinction event in the Selwyn Basin, northwestern Canada: Geochemical, sedimentological and paleontological evidence. Can. J. Earth Sci. 30, 1870–1880.

    Google Scholar 

  • Wang, K. and Geldsetzer, H.H.J., 1992. A Late Devonian impact event (about 1.5 Ma after the F/F crisis) in South China and Western Australia and its association with a possible mass extinction event. In: Walliser, O.H. (ed.), Phanerozoic Global Bio-events and Event Stratigraphy. pp. 118–119. Fifth International Conference on Bio-Events, Göttingen, 15–19 February, 1992, Abstracts.

    Google Scholar 

  • Wang, K., Orth, C.M., Attrep, M., Jr., Chatterton, B.D.E., Hou, H. and Geldsetzer, H.H.J., 1991. Geochemical evidence for a catastrophic biotic event at the Frasnian/Famennian boundary in south China. Geology 19, 776–779.

    Google Scholar 

  • Wang, K., Orth, C.J., Attrep, M., Jr., Chatterton, B.D.E., Wang X. and Li J.-J., 1993. The great latest Ordovician extinction on the South China Plate: Chemostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtse Platform. Palaeogeog. Palaeoclimat. Palaeoecol. 104, 61–79.

    Google Scholar 

  • Wei, W., 1991. Evidence for an earliest Oligocene abrupt cooling in the surface waters of the Southern Ocean. Geology 19, 760–763.

    Google Scholar 

  • Weissert, H., 1989. C-isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the Early Cretaceous. Surv. Geophys. 10, 1–61.

    Google Scholar 

  • Williams, D.F., Lerche, I. and Full, W.F., 1988. Isotope Chronostratigraphy: Theory and Methods. 345 pp. Academic Press, San Diego.

    Google Scholar 

  • Woodruff, F. and Savin, S.M., 1989. Miocene deepwater stratigraphy. Paleoceanography 4, 87–140.

    Google Scholar 

  • Woodruff, F. and Savin, S.M., 1991. Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography 6, 755–806.

    Google Scholar 

  • Woodruff, F., Savin, S.M. and Douglas, R.G., 1981. Miocene stable isotope record: A detailed deep Pacific Ocean study and its paleoclimatic implications. Science 212, 665–668.

    Google Scholar 

  • Xu D.-Y., Yan Z., Zhang Q.-W. and Sun Y.Y., 1986. Three main mass extinctions-significant indicators of major natural divisions of geological history in the Phanerozoic. Mod. Geol. 10, 365–375.

    Google Scholar 

  • Zachos, J.C., Arthur, M.A. and Dean, W.E., 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337, 61–64.

    Google Scholar 

  • Zachos, J.C., Berggren, W.A., Aubry, M.-P. and Mackensen, A., 1992. Isotope and trace element geochemistry of Eocene and Oligocene foraminifera from Site 478, Kerguelen Plateau. Proc. Ocean Drill. Prog. Sci. Res. 120, 839–854.

    Google Scholar 

  • Zachos, J.C., Breza, J.R. and Wise, W.W., 1992. Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569–573.

    Google Scholar 

  • Zachos, J.C., Rea, D.K., Seto, K., Nomura, R. and Niitsuma, N., 1992. Paleogene and Early Neogene deep water paleoceanography of the Indian Ocean as determined from benthic foraminifer stable carbon and oxygen isotope records. Amer. Geophys. Un. Geophys. Monogr. 70, 351–385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holser, W.T., Magaritz, M., Ripperdan, R.L. (1996). Global Isotopic Events. In: Walliser, O.H. (eds) Global Events and Event Stratigraphy in the Phanerozoic. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79634-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79634-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79636-4

  • Online ISBN: 978-3-642-79634-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics