Advertisement

Phanerozoic Development of Selected Global Environmental Features

  • Jared R. Morrow
  • Eberhard Schindler
  • Otto H. Walliser

Abstract

Data on diversity and extinction as well as the development of certain environment-controlling parameters for the entire Phanerozoic are widely scattered in the literature. Therefore, selected Phanerozoic physical, chemical, and biological data are compiled herein in order to allow a comparison and the testing of their relevance for the causation of global events.

Keywords

Late Cretaceous Global Event Mantle Convection Late Ordovician Impact Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.F., 1990. Temperature from oxygen isotope ratios. In: Briggs, D.E.G. and Crowther, P.R. (eds.), Paleobiology — a synthesis. pp. 403–406. Blackwell Sci. Publ., Oxford-London-Edinburgh-Boston-Melbourne.Google Scholar
  2. Bluth, G.J.S. and Kump, L.R., 1991. Phanerozoic paleogeology. Amer. J. Sci. 291, 284–308.CrossRefGoogle Scholar
  3. Boucot, A.J., 1983. Does evolution take place in an ecological vacuum. J. Paleont. 57, 1–30.Google Scholar
  4. Boucot, A.J., 1990. Phanerozoic extinctions: How similar are they to each other? Lecture Notes Earth Sci. 30, 5–30.CrossRefGoogle Scholar
  5. Burchette, T.P. and Wright, V.P., 1992. Carbonate ramp depositional systems. Sediment. Geol. 79, 3–57.CrossRefGoogle Scholar
  6. Copper, P., 1988. Ecological succession in Phanerozoic reef ecosystems: Is it real? Palaios 3, 136–151.CrossRefGoogle Scholar
  7. Engel, A.E.J. and Engel, C.G., 1964. Continental accretion and the evolution of North America. In: Subramaniam, A.P. and Balakrishna, S. (eds.), Advancing frontiers in geology and geophysics. pp. 17–37. Indian Geophys. Union, Hyderabad.Google Scholar
  8. Fischer, A.G., 1981. Climatic oscillations in the biosphere. In: Nitecki, M.H. (ed.), Biotic crises in ecological and evolutionary time. pp. 103–131. Acad. Press, New York-London-Toronto-Sydney-San Francisco.Google Scholar
  9. Fischer, A.G., 1984. The two Phanerozoic super-cycles. In: Berggren, W.A. and Van Couvering, J.A. (eds.), Catastrophes and Earth history. pp. 129–150. Princeton Univ. Press, Princeton.Google Scholar
  10. Frakes, L.A., 1979. Climates throughout geologic time. 310 pp. Elsevier, Amsterdam-Oxford-New York.Google Scholar
  11. Grieve, R.A.F. and Robertson, P.B., 1987. Terrestrial impact structures. Geol. Surv. Canada, Map 1658 A, scale 1:63 000 000, Suppl. to Episodes 10 (2).Google Scholar
  12. Hallam, A., 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Phil. Trans. R. Soc. London B 325, 437–455.CrossRefGoogle Scholar
  13. Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G. and Smith, D.G., 1990. A geologic time scale 1989. 263 pp. Cambridge Univ. Press, Cambridge-New York-Port Chester-Melbourne-Sydney.Google Scholar
  14. Holser, W.T., 1984. Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. In: Holland, H.D. and Trendall, A.F. (eds.), Patterns of change in Earth evolution. Dahlem Workshop Reports, Phys. Chem. Earth Sci. Res. Rep. 5, 123–143. Springer, Berlin Heidelberg New York.CrossRefGoogle Scholar
  15. Holser, W.T., 1992. Stable isotope geochemistry of sulfate and chloride rocks. Lecture Notes Earth Sci. 43, 153–176.CrossRefGoogle Scholar
  16. Kauffman, E.G. and Fagerstrom, J.A., 1993. The Phanerozoic evolution of reef diversity. In: Ricklefs, R. and Schluter, D. (eds.), Species diversity in ecological communities. pp. 315–329. Univ. Chicago Press, Chicago-London.Google Scholar
  17. Kazmierczak, J., Ittekkot, V. and Degens, E.T., 1985. Biocalcification through time: Environmental challenge and cellular response. Paläont. Z. 59, 15–33.Google Scholar
  18. Meyerhoff, A.A., Lyons, J.B.. and Officer, C.B., 1994. Chicxulub structure: A volcanic sequence of Late Cretaceous age. Geology 22, 3–4.CrossRefGoogle Scholar
  19. Newell, N.D., 1972. The evolution of reefs. Sci. Amer. 226, 54–65.CrossRefGoogle Scholar
  20. Niklas, K.J., 1986. Large-scale changes in animal and plant terrestrial communities. In: Raup, D.M. and Jablonski, D. (eds.), Patterns and processes in the history of life. Dahlem Workshop Reports, Life Sci. Res. Rep. 36, 383–405. Springer, Berlin Heidelberg New York.CrossRefGoogle Scholar
  21. Padian, K. and Clemens, W.A., 1985. Terrestrial vertebrate diversity: Episodes and insights. In: Valentine, J.W. (ed.), Phanerozoic diversity patterns. pp. 41–96. Princeton Univ. Press, Princeton-San Francisco.Google Scholar
  22. Rampino, M.R. and Stothers, R.B., 1988. Flood basalt volcanism during the last 250 million years. Science 241, 663–668.CrossRefGoogle Scholar
  23. Ronov, A.B., 1994. Phanerozoic transgressions and regressions on the continents: A quantitative approach based on areas flooded by the sea and areas of marine and continental deposition. Amer. J. Sci. 294, 777–801.CrossRefGoogle Scholar
  24. Savin, S.M., 1982. Stable isotopes in climatic reconstructions. Stud. in Geophys., Climate in Earth Hist. pp. 164–171. National Acad. Press, Washington, D.C.Google Scholar
  25. Sepkoski, J.J., Jr., 1995. Patterns of Phanerozoic Extinction: a Perspective from Global Data Bases. In: Walliser, O.H. (ed.), Global Events and Event Stratigraphy in the Phanerozoic, 35–51, Springer, Berlin Heidelberg New York.Google Scholar
  26. Sheehan, P.M., 1985. Reefs are not so different — They follow the evolutionary pattern of level-bottom communities. Geology 13, 46–49.CrossRefGoogle Scholar
  27. Smalley, P.C., Higgins, A.C., Howarth, R.J., Nicholson, H., Jones, C.E., Swinburne, N.H.M. and Bessa, J., 1994. Seawater Sr isotope variations through time: A procedure for constructing a reference curve to date and correlate marine sedimentary rocks. Geology 22, 431–434.CrossRefGoogle Scholar
  28. Talent, J.A., 1988. Organic reef-building: Episodes of extinction and symbiosis? Senckenbergiana lethaea 69, 315–368.Google Scholar
  29. Vail, P.R., Audemard, F., Bowman, S.A., Eisner, P.N. and Perez-Cruz, C., 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology — an overview. In: Einsele, G., Ricken, W. and Seilacher, A. (eds.), Cycles and events in stratigraphy. pp. 617–659. Springer, Berlin Heidelberg New York.Google Scholar
  30. Vail, P.R., Mitchum, R.M., Jr. and Thompson, S. III, 1977. Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level. Amer. Assoc. Petrol. Geol. Mem. 26, 83–97.Google Scholar
  31. Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C (eds.), 1988. Sea-level changes: An integrated approach. Soc. Econ. Paleont. Mineral. Spec. Publ. 42, 407 pp.Google Scholar
  32. Wise, D.U., 1974. Continental margins, freeboard and the volumes of continents and oceans through time. In: Burke, K. and Drake, C.L. (eds.), The geology of continental margins. pp. 45–58. Springer, Berlin Heidelberg New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jared R. Morrow
    • 1
  • Eberhard Schindler
    • 2
  • Otto H. Walliser
    • 3
  1. 1.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  2. 2.Forschungsinstitut SenckenbergFrankfurt am MainGermany
  3. 3.Institut und Museum für Geologie und PaläontologieGöttingenGermany

Personalised recommendations