Advertisement

Abstract

Permian global bio-events have been largely overshadowed by the end-Permian mass extinction, the highest-order bio-event of the Phanerozoic, which seems to have affected much of the Upper Permian. Regional marine bio-events are known from Lower Permian, but lack of attention and correlation difficulties have made it difficult to determine whether these events are truly global in nature. At least two global tetrapods events are known from taxonomic studies during the Lower Permian but have not been tied to specific sections. The end-Permian Event is associated with numerous geologic, climatic and geochemical perturbations, several of which may have contributed to the extensive extinctions. Sea-level change and associated habitat destruction, climatic instability and other factors were particularly important.

Keywords

Mass Extinction Flood Basalt Methane Hydrate Rugose Coral Siberian Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev, A.S., Barsokova, L.D., Koesov, G.M., Nazarov, M.A. and Grigoryan, A.G., 1983. Permian-Triassic boundary event: geochemical investigations of the Transcaucasia section. Abstracts 14th Lunar and Planetary Conf., pp. 3–4.Google Scholar
  2. Alvarez, L.W., Alvarez, W., Asaro, F. and Mitchel, H.V., 1980. Extra-terrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1094–1108.CrossRefGoogle Scholar
  3. Asaro, F., Alvarez, L.W., Alvarez, W. and Mitchel, H.V., 1982. Geochemical anomalies near the Eocene/Oligocene and Permian/Triassic boundaries. In: Silver, L.T. and Schultz, P.H. (eds.), Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Special Paper 190, Geological Society of America, 517–528.Google Scholar
  4. Assereto, R., Bosellini, A., Fantini Sestini, N. and Sweet, W.C., 1973. The Permian-Triassic boundary in the southern Alps (Italy). In: Logan, A. and Hills, L.V. (eds.), The Permian and Triassic Systems and Their Mutual Boundary. Memoir 2, Canadian Society of Petroleum Geologists, 176–199.Google Scholar
  5. Baud, A., Magaritz, M. and Holser, W.T., 1989. Permian-Triassic of the Tethys: carbon isotope studies. Geologische Rundschau 78, 649–677.CrossRefGoogle Scholar
  6. Benton, M., 1987. Mass extinctions among families of non-marine tetrapods: the data. Memoir. Soc. Geol. France No. 150, 21–32.Google Scholar
  7. Benton, M.J., 1988. Mass extinctions in the fossil record of reptiles: paraphyly, patchiness and periodicity (?). In: Larwood, G.P. (ed.), Extinction and Survival in the Fossil Record. pp. 269–294. Oxford University Press, Oxford.Google Scholar
  8. Campbell, LH., Czmanske, G.K., Fedorenko, V.A., Hill, R.I. and Stepanov, V., 1992. Synchronism of the Siberian traps and the Permian-Triassic boundary. Science 258, 1760–1763.CrossRefGoogle Scholar
  9. Cassinis, G., (ed.), 1988. Proceedings of the Field Conference on: Permian and Permian-Triassic boundary in the South-Alpine segment of the Western Tethys, and additional regional reports. Memorie della Societa Geologica Italiana 34, 1–366.Google Scholar
  10. Claoue-Long, J.C., Zhang, Z.C., Ma, G.G. and Du, S.H., 1991. The age of the Permian-Triassic boundary. Earth and Planetary Science Letters 105, 182–190.CrossRefGoogle Scholar
  11. Clark, D.J., Wang, C.-Y., Orth, CJ. and Gilmore, J.S., 1986. Conodont survival and low iridium abundances across the Permian-Triassic boundary in South China. Science 233, 984–986.CrossRefGoogle Scholar
  12. Crowell, J.C., 1983. Ice ages recorded on Gondwanan continents. Geological Society of South Africa Transactions 86, 237–262.Google Scholar
  13. Crowell, J.C., 1995. The ending of the Late Paleozoic Ice Age during the Permian Period. In: Scholle, P. (ed.), The Permian of the Northern Continents. Springer, Berlin Heidelberg New York.Google Scholar
  14. Dickins, J.M., 1983. Permian to Triassic changes in life. Mem. Australasian Paleontols. 1, 297–303.Google Scholar
  15. Dickins, J.M., 1985. Late Paleozoic glaciation. Journal of Geology and Geophysics 9, 163–169.Google Scholar
  16. DiMichele, W.A. and Aronson, R.B., 1992. The Pennsylvanian-Permian vegetational transition: a terrestrial analogue to the onshore-offshore hypothesis. Evolution 46, 807–824.CrossRefGoogle Scholar
  17. Erwin, D.H., 1990. The end-Permian mass extinction. Annual Review of Ecology and Systematics 21, 69–91.CrossRefGoogle Scholar
  18. Erwin, D.H., 1993. The Great Dying: Life and Death in the Permian. 352 p. Columbia University Press, New York.Google Scholar
  19. Erwin, D.H., 1994. The Permo-Triassic extinction. Nature 367, 231–236.CrossRefGoogle Scholar
  20. Erwin, D.H. and Vogel, T.A., 1992. Testing for causal relationships between large pyroclastic volcanic eruptions and mass extinctions. Geophysical Research Letters 19, 893–896.CrossRefGoogle Scholar
  21. Eshet, T., 1992. The palynological succession and palynological events in the Permo-Triassic boundary interval in Israel. In: Sweet, W.C., Yang, Z.Y., Dickins, J.M. and Yin, H.F. (eds.), Permo-Triassic Boundary Events in the Eastern Tethys. pp. 134–145. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  22. Ezaki, Y., 1994. Patterns and paleoenvironmental implications of end-Permian extinction of Rugosa in South China. Palaeogeography, Palaeoclimato-logy, Palaeoecology 107, 165–187.CrossRefGoogle Scholar
  23. Flügel, E. and Reinhardt, J., 1989. Uppermost Permian reefs in Skyros (Greece) and Sichuan (China): implications for the Late Permian extinction event. Palaios 4, 502–518.CrossRefGoogle Scholar
  24. Forney, G.G., 1975. Permo-Triassic sea level change. Journal of Geology 83, 773–779.CrossRefGoogle Scholar
  25. Frederiksen, N.O., 1972. The rise of the Mesophytic flora. Geoscience and Man 4, 17–28.CrossRefGoogle Scholar
  26. Gruszczynski, M., Halas, S., Hoffman, A. and Mal-kowski, K., 1989. A brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition. Nature 337, 64–68.CrossRefGoogle Scholar
  27. Gruszczynski, M., Hoffman, A., Malkowski, K., Zawidzka, K., Halas, S. and Zeng, Y., 1990. Carbon isotope drop across the Permian-Triassic boundary in SE Sichuan, China. N. Jb. Geol. Paläont. Mh 10, 600–606.Google Scholar
  28. Hallam, A., 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Phil. Trans. Roy. Soc. B 235, 437–455.CrossRefGoogle Scholar
  29. Hallam, A., 1991. Why was there a delayed radiation after the end-Paleozoic extinctions? Historical Biology 5, 257–262.CrossRefGoogle Scholar
  30. Heller, F., Lowrie, W., Li, H.M. and Wang, J., 1988. Magnetostratigraphy of the Permo-Triassic boundary section at Shangsi (Guangyuan, Sichuan Province, China). Earth and Planetary Science Letters 88, 348–356.CrossRefGoogle Scholar
  31. Hoffman, A., Gruszczynski, M. and Malkowski, K., 1990. Oceanic ∂13C values as indicators of atmospheric oxygen depletion. Modern Geology 14, 211–221.Google Scholar
  32. Holser, W.T. and Magaritz, M., 1987. Events near the Permian-Triassic boundary. Modern Geology 11, 155–180.Google Scholar
  33. Holser, W.T. and Schönlaub, H.P., 1991. The Permian-Triassic boundary in the Carnic Alps of Austria (Gartnerkofel Region). Abhandlungen der Geologischen Bundesanstalt 45, 1–232.Google Scholar
  34. Holser, W.T., Schönlaub, H.-P., Attrep, M., Jr., Boeckelmann, K., Klein, P. et al., 1989. A unique geochemical record at the Permian/Triassic boundary. Nature 337, 39–44.CrossRefGoogle Scholar
  35. Ingavat-Helmcke, R. and Helmcke, D., 1986. Permian fusulinacean faunas of Thailand — event controlled evolution. In: Walliser, O.H. (ed.), Global Bio-Events. pp. 240–248. Springer, Berlin Heidelberg New York.Google Scholar
  36. King, G.M., 1991. Terrestrial tetrapods and the end-Permian event: a comparison of analyses. Historical Biology 5, 239–255.CrossRefGoogle Scholar
  37. Knoll, A.H., 1984. Patterns of extinction in the fossil record of vascular plants. In: Nitecki, M.H. (ed.), Extinctions. pp. 23–68. University of Chicago Press, Chicago.Google Scholar
  38. Kvenvolden, K., 1988. Methane hydrate — a major reservoir of carbon in the shallow geosphere. Chemical Geology 71, 41–51.CrossRefGoogle Scholar
  39. Labandeira, C. and Sepkoski, J.J., Jr., 1993. Insect diversity in the fossil record. Science 261, 310–315.CrossRefGoogle Scholar
  40. Malkowski, K., Gruszczynski, M., Hoffman, A. and Halas, S., 1989. Oceanic stable isotope composition and a scenario for the Permo-Triassic crisis. Historical Biology 2, 289–309.CrossRefGoogle Scholar
  41. Maxwell, W.D., 1989. The end Permian mass extinction. In: Donovan, S.K. (ed.), Mass Extinctions: Processes and Evidence. pp. 152–173. Belhaven Press, London.Google Scholar
  42. Maxwell, W.D., 1992. Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology 35, 571–584.Google Scholar
  43. Molostovskiy, E.A., 1992. Paleomagnetic stratigraphy of the Permian System. International Geology Review 34, 1001–1007.CrossRefGoogle Scholar
  44. Nisbet, E.G., 1990. The end of the ice age. Canadian Journal of Earth Sciences 27, 148–157.CrossRefGoogle Scholar
  45. Olson, E.C., 1986. Problems of Permo-Triassic terrestrial vertebrate extinctions. Historical Biology 2, 17–35.CrossRefGoogle Scholar
  46. Orth, C.J., 1989. Geochemistry of the bio-event horizons. In: Donovan, S.K. (ed.), Mass Extinctions: Processes and Evidence. pp. 37–72. Belhaven Press, London.Google Scholar
  47. Orth, C.J., Attrep, M., Jr., and Quintana, L.R., 1990. Iridium abundance patterns across bio-event horizons in the fossil record. In: Sharpton, V.L. and Ward, P.D. (eds.), Global Catastrophes in Earth History. pp. 45–60. Geological Society of America Special Paper 247, Boulder, CO: Geological Society of America.Google Scholar
  48. Pauli, C.K., Ussier, W., III, and Dillon, W.P., 1991. Is the extent of glaciation limited by marine gas-hydrates? Geophysical Research Letters 18, 432–434.CrossRefGoogle Scholar
  49. Pinto, J.P., Turco, R.P. and Toon, O.B., 1989. Self-limiting physical and chemical effects in volcanic eruption clouds. Journal of Geophysical Research 94, 11165–11174.CrossRefGoogle Scholar
  50. Raup, D.M., 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206, 217–218.CrossRefGoogle Scholar
  51. Raup, D.M. and Sepkoski, J.J., Jr., 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences, USA 81, 801–805.CrossRefGoogle Scholar
  52. Raup, D.M. and Sepkoski, J.J., Jr., 1986. Periodic extinction of families and genera. Science 231, 833–836.CrossRefGoogle Scholar
  53. Robinson, P.L., 1973. Palaeoclimatology and continental drift. In: Darlington, D.H. and Runcorn, S.K. (eds.), Implications of Continental Drift to the Earth Sciences. pp. 451–476. Academic Press, London.Google Scholar
  54. Sadler, P., 1981. Sediment accumulation rates and the completeness of stratigraphic sections. Journal of Geology 89, 569–584.CrossRefGoogle Scholar
  55. Schäfer, P. and Fois-Erickson, E., 1986. Triassic bryozoa and the evolutionary crisis of Paleozoic stenolaemata. In: Walliser, O.H. (ed.), Global Bio-events. pp. 251–255. Springer, Berlin Heidelberg New York.Google Scholar
  56. Sepkoski, J.J., Jr., 1984. A kinetic model of Phanero-zoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10, 246–267.Google Scholar
  57. Sepkoski, J.J., Jr., 1989. Periodicity in extinction and the problem of catastrophism in the history of life. Journal of the Geological Society of London 146, 7–19.CrossRefGoogle Scholar
  58. Sepkoski, J.J., Jr., 1992. A compendium of fossil marine animal families, 2d ed.; Milwaukee Public Museum Contributions in Biology and Geology 83, 1–155.Google Scholar
  59. Signor, P.W., III, and Lipps, J.H., 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. In: Silver, L.T. and Schultz, P.H. (eds.), Geological Implications of Impacts of Large Asteroids and Comets on Earth. Geol. Soc. Amer. Sp. Pap. 190, 291–296.Google Scholar
  60. Spitzy, A. and Degens, E.T., 1985. Modeling stable isotopic fluctuations through geologic time. Mitteilungen Geologisch-Paläontologisches Institut Universität Hamburg 59, 155–166.Google Scholar
  61. Stanley, S.M., 1988. Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. American Journal of Science 288, 334–352.CrossRefGoogle Scholar
  62. Steiner, M., Ogg, J., Zhang, Z. and Sun, S., 1989. The late Permian/Early Triassic magnetic polarity time scale and plate motions of South China. Journal of Geophysical Research 94, 7343–7363.CrossRefGoogle Scholar
  63. Sun, Y.Y., Chai, Z.F., Ma, S.L., Mao, W.Y., Xu, D.Y., Zhang, Q.W., Yang, Z.Z., Sheng, J.Z., Chen, C.Z., Rui, L., Liang, X.L. and Hi, J.W., 1984. The discovery of iridium anomaly in the Permian-Triassic boundary clay in Chagxing, Zhijing, China and its significance. In: Tu, G. (ed.), Developments in Geosciences. pp. 235–245. Beijing, Science Press.Google Scholar
  64. Sweet, W.C., 1992. A conodont-based high-resolution biostratigraphy for the Permo-Triassic boundary interval. In: Sweet, W.C., Yang, Z.Y., Dickins, J.M. and Yin, H.F. (eds.), Permo-Triassic Boundary Events in the Eastern Tethys. pp. 120–133. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  65. Sweet, W.C., Yang, Z.Y., Dickins, J.M. and Yin, H.F., eds., 1992. Permo-Triassic Boundary Events in the Eastern Tethys. Cambridge University Press, Cambridge.Google Scholar
  66. Teichert, C., 1990. The Permian-Triassic boundary revisited. In: Kauffman, E.G. and Walliser, O.H. (eds.), Extinction Events in Earth History. pp. 199–238. Springer, Berlin Heidelberg New York.CrossRefGoogle Scholar
  67. Traverse, A., 1988. Plant evolution dances to a different beat. Historical Biology 1, 277–302.CrossRefGoogle Scholar
  68. Visscher, H. and Brugman, W.A., 1988. The Permian-Triassic boundary in the Southern Alps: a palynological approach. Memorie della Societa Geologica Italiana 34, 121–128.Google Scholar
  69. Wignall, P.B. and Hallam, A., 1992. Anoxia as a cause of the Permian/Triassic extinction: facies evidence from northern Italy and the western United States. Palaeogeography, Palaeoclimato-logy, Paleoclimatology 48, 143–162.Google Scholar
  70. Wignall, P.B. and Hallam, A., 1993. Greisbachian (earliest Triassic) paleoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic extinction. Palaeogeography, Palaeoclimatology, Paleoclimatology 102, 215–237.CrossRefGoogle Scholar
  71. Xu, D.Y., Ma, S.-L., Chai, Z.-F., Mao, X.-Y., Sun, Y.-Y. et al., 1985. Abundance variation of iridium and trace elements at the Permian/Triassic boundary at Shagsi in China. Nature 314, 154–156.CrossRefGoogle Scholar
  72. Xu, D.Y., Zhang, Q.W., Sun, Y.Y., Yan, Z., Chai, Z.F. and He, J.W., 1989. Astrogeological Events in China. Van Nostrand Reinhold, New York.Google Scholar
  73. Xu, G., 1991. Stratigraphical time-correlation and mass extinction event near Permian-Triassic boundary in South China. Journal of China University of Geosciences 2, 36–46.Google Scholar
  74. Xu, G. and Grant, R.E., 1994. Brachiopods near the Permian-Triassic boundary in South China. Smithsonian Contributions to Paleobiology 76, 1–68.Google Scholar
  75. Yang, Z.Y. and Yin, H.F., 1987. Achievements in the study of Permo-Triassic events in South China. Advances in Science of China, Earth Sciences 2, 23–43.Google Scholar
  76. Yin, Y.S., Chai, Z., Ma, S., Mao, Z., Xu, D. et al., 1984. The discovery of iridium anomaly in the Permian-Triassic boundary clay in Changxing, Zhejiang, China and its significance. pp. 235–245. In: Developments in Geosciences: Contributions to 27th Annual International Geological Congress, Moscow Academica Sinica, Beijing.Google Scholar
  77. Yin, H.F., Xu, G.R. and Ding, M.H., 1984. Palaeo-zoic-Mesozoic alternation of marine biota in South China. Scientific Papers on Geology for International Exchange — Prepared for the 27th International Geological Congress, 195–207.Google Scholar
  78. Yin, H.F., Huang, S., Zhang, K.X., Yang, F.Q., Ding, M.H., Ziamei, B.I. and Suzian, Z., 1989. Volcanism at the Permian-Triassic boundary in South China and its effects on mass extinction. Acta Geologica Sinica 2, 417–431.Google Scholar
  79. Yin, H.F., Huang, S., Zhang, K.X., Hansen, H.J., Yang, F.Q., Ding, M.H. and Die, X.M., 1992. The effects of volcanism on the Permo-Triassic mass extinction in South China. In: Sweet, W.C., Yang, Z.Y., Dickins, J.M. and Yin, H.F. (eds.), Permo-Triassic Boundary Events in the Eastern Tethys. pp. 146–157. Cambridge University Press, Cambridge.Google Scholar
  80. Zhou, L. and Kyte, F.T., 1988. The Permian-Triassic boundary event: a geochemical study of three Chinese sections. Earth and Planetary Sciences 90, 411–421.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Douglas H. Erwin
    • 1
  1. 1.Department of Paleobiology, National Museum of Natural History, NHB-121Smithonian InstitutionUSA

Personalised recommendations