How Swarms Build Cognitive Maps

  • Dante R. Chialvo
  • Mark M. Millonas
Part of the NATO ASI Series book series (volume 144)


Swarms of social insects construct trails and networks of regular traffic via a process of pheromone laying and following. These patterns constitute what is known in brain science as a cognitive map. The main difference lies in the fact that the insects write their spatial memories in the environment, while the mammalian cognitive map lies inside the brain. This analogy can be more than a poetic image, and can be further justified by a direct comparison with the neural processes associated with the construction of cognitive maps in the hippocampus. We investigate via analysis and numerical simulation the formation of trails and networks in a collection of insect-like agents. The agents interact in simple ways which are determined by experiments with real ants


Social Insect Transition Line Sensory Capacity Brain Science Pheromone Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. O. Wilson, The Insect Societies, Cambridge: Belknam Press, 1971Google Scholar
  2. 2.
    E. O. Wilson, Sociobiology, Cambridge: Belknam Press, 1975Google Scholar
  3. 3.
    E. O. Wilson, Animal Behavior 10, 134–164 (1962)CrossRefGoogle Scholar
  4. 4.
    W. J. Freeman, Mass Action in the Nervous System, New York: Academic Press, 1975Google Scholar
  5. 5.
    B. Holldobler, and E. O. Wilson, The Ants, Cambridge: Belknap (1990)Google Scholar
  6. 6.
    W. Hangartner, Z. vergl. Physiol. 57, 103 (1967)CrossRefGoogle Scholar
  7. 7.
    R. Beckers, J.–L. Deneubourg, S. Goss. and J. M. Pasteels, Insectes Soc. 373, 258 (1990)CrossRefGoogle Scholar
  8. 8.
    J.–L. Deneubourg, S. Aron, S. Goss and J. M. Pasteels, J. Insect Behav. 32, 159 (1990)CrossRefGoogle Scholar
  9. 9.
    S. Goss, R. Beckers, J.–L. Deneubourg, S. Aron, and J. M. Pasteels, In: Behav¬ioral Mechanisms of Food Selection, Nato ASI Series G20 ( Hughes, ed.) Berlin Heidelberg: Springer–Verlag (1990)Google Scholar
  10. 10.
    V. Calenbuhr and J.–L. Deneubourg, In: Biological Motion ( W. Alt, and G. Hoffmann,453, Berlin: Springer–Verlag (1990)Google Scholar
  11. 11.
    V. Calenbuhr and J.–L. Deneubourg, J. Theor. Biol. 158, 359 (1991)CrossRefGoogle Scholar
  12. 12.
    V. Calenbuhr, L. Chretien, J.–L. Deneubourg and C. Detrain, J. Theor. Biol. 158, 395 (1991)CrossRefGoogle Scholar
  13. 13.
    M. M. Millonas, J. Theor. Biol. 159, 529 (1992)CrossRefGoogle Scholar
  14. 14.
    M. M. Millonas, In: Artificial Life III(C. G. Langton, ed.). Santa Fe Insti¬tute Studies in the Sciences of Complexity, Reading, Massachusetts: Addison– Wesley, (1994)Google Scholar
  15. 15.
    M. M. Millonas, In: Pattern Formation in Physical and Biological Systems(P. Claudis, ed.). Santa Fe Institute Studies in the Sciences of Complexity, Reading, Massachussetts: Addison–Wesley, (1994)Google Scholar
  16. 16.
    R. P. Evershed, E. D. Morgan and M. C. Cammaerts, Insect Biochem. 12, 383 (1981)Google Scholar
  17. 17.
    C. Detrain, J. M. Pasteels, and J.–L. Deneubourg, Actes coll. Insectes Sociaux 4, 87 (1988)Google Scholar
  18. 18.
    S. Gerardy and J. C. Verhaeghe, Actes coll. Insectes Sociaux 4, 235 (1988)Google Scholar
  19. 19.
    M. A. Wilson and B. L McNaughton, Science 261, 1055 (1993)CrossRefGoogle Scholar
  20. 20.
    M. A. Wilson and B. L McNaughton, Science 265, 679 (1994)CrossRefGoogle Scholar
  21. 21.
    R. Beckers, J.–L. Deneubourg and S. Goss, J. Theor. Biol. 159, 397 (1992)CrossRefGoogle Scholar
  22. 22.
    P. Bäk, C. Tang and K. Weisenfield, Phys. Rev. A 38, 364 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    P. Bäk, K. Chen and M. Creutz, Nature 342, 780 (1989)CrossRefGoogle Scholar
  24. 24.
    N. H. Packard, In: Complexity in Biological Modeling (S. Kelso and M. Shlesinger,(988)Google Scholar
  25. 25.
    C. G. Langton, Computation at the edge of chaos: Phase transitions and emergent computation, Ph. D. Thesis, University of Michigan, 1991Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Dante R. Chialvo
    • 1
    • 2
  • Mark M. Millonas
    • 3
    • 4
  1. 1.Fluctuations & Biophysics GroupThe Santa Fe InstituteSanta FeUSA
  2. 2.Ecology Evolutionary Biology and ARL, Neural Systems, Memory & AgingUniversity of ArizonaUSA
  3. 3.Theoretical Division and CNLS, MS B258 Los Alamos National LaboratoryLos AlamosUSA
  4. 4.Fluctuation & Biophysics GroupThe Santa Fe InstituteUSA

Personalised recommendations