Skip to main content

Transcriptional Regulation of the Adenovirus E1A Gene

  • Chapter
The Molecular Repertoire of Adenoviruses III

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/3))

Abstract

Two distinct classes of the regulatory sequences have been identified in eukaryotic transcription systems. Promoter sequences are located close to the transcription initiation site, and enhancer sequences can be located far upstream or downstream from the initiation site. Most of the enhancer consists of multiple DNA-binding sites for proteins which act either synergistically or antagonistically to modulate transcriptional activity (Johnson and McKnight 1989; Mitchell and Tjian 1989). The 72-base pair (bp) repeats of the simian virus 40 (SV40) early promoter/enhancer region constitute one of the best-characterized enhancer elements (Herr and Clarke 1986; Zenke et al. 1986; Ondek et al. 1988). The region is composed of a number of modular units, and the combined action of these different units determines the degree of enhancer activity in different cell types. Promoter sequences include the TATA box and initiation sites of transcription, which are involved in the positioning of the transcription initiation site. Promoters of house-keeping genes contain GC-rich sequences and an initiator element instead of the TATA box. These cis-acting elements operate by interacting with specific DNA-binding proteins. Therefore, an understanding of the mechanisms operational in transcriptional regulation of eukaryotic genes entails unravelling the mechanisms controlling the activity of these DNA-binding proteins (McKnight and Yamamoto 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagchi S, Raychaudhuri P, Nevins JR (1990) Adenovirus E1A proteins, can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62: 659–669

    Article  PubMed  CAS  Google Scholar 

  • Barrett P, Clark L, Hay RT (1987) A cellular protein binds to a conserved sequence in the adenovirus type 2 enhancer. Nucleic Acids Res 15: 2719–2735

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ (1986) Adenovirus promoters and E1A transactivation. Annu Rev Genet 20: 45–79

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1978) Structure of the adenovirus 2 early mRNAs. Cell 12: 45–55

    Article  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early Ad5 gene product regulates synthesis of early mRNAs. Cell 17: 935–944

    Article  PubMed  CAS  Google Scholar 

  • Bolwig GM, Bruder JT, Hearing P (1992) Different binding site requirements for binding and activation for the bipartite enhancer factor EF-1 A. Nucleic Acids Res 20: 6555–6564

    Article  PubMed  CAS  Google Scholar 

  • Borelli E, Hen R, Chambon P (1984) Adenovirus-2 E1a products repress enhancer-induced stimulation of transcription. Nature 312: 608–612

    Article  Google Scholar 

  • Bosher J, Robinson EC, Hay RT (1990) Interactions between the adenovirus type 2 DNA polymerase and the DNA binding domain of nuclear factor 1. New Biol 2: 1083–1090

    PubMed  CAS  Google Scholar 

  • Bruder JT, Hearing P (1989) Nuclear factor EF-1A binds to the adenovirus E1A core enhancer element and to other transcriptional control regions. Mol Cell Biol 9: 5143–5153

    PubMed  CAS  Google Scholar 

  • Bruder JT, Hearing P (1991) Cooperative binding of EF-1A to the E1A enhancer region mediates synergistic effects on E1A transcription during adenovirus infection. J Virol 65: 5084–5087

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly JK (1989) Animal virus DNA replication. Annu Rev Biochem 58: 671–717

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Bruner M, Flint SJ, Harter ML (1988) DNA-binding properties of an adenovirus 289R E1A proteins. EMBO J 7: 835–841

    PubMed  CAS  Google Scholar 

  • Chen M, Mermod N, Horwitz MS (1990) Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. J Biol Chem 265: 18634–18642

    PubMed  CAS  Google Scholar 

  • Chiu R, Imagawa M, Imbra RJ, Bockoven JR, Karin M (1987) Multiple cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature 329: 648–651

    Article  PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus-2. J Mol Biol 134: 265–303

    Article  PubMed  CAS  Google Scholar 

  • Ferguson B, Krippl B, Andrisani O, Jones N, Westphal H, Rosenberg M (1985) E1A 13s and 12s mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol Cell Biol 5: 2653–2661

    PubMed  CAS  Google Scholar 

  • Flint SJ, Shenk T (1989) Adenovirus E1A protein paradigm viral transactivator. Annu Rev Genet 23: 141–161

    Article  PubMed  CAS  Google Scholar 

  • Fognani C, DellaValle G, Babiss LE (1993) Repression of adenovirus EIA enhancer activity by a novel zinc finger-containing DNA-binding protein related to the GLI-Kruppel protein. EMBO J 12: 4985–4992

    PubMed  CAS  Google Scholar 

  • Hai T, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding hetero-dimers. Genes Dev 3: 2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Hardy S, Shenk T (1988) Adenoviral control regions activated by EIA and the cAMP response element bind to the same factor. Proc Natl Acad Sci USA 85: 4171–4175

    Article  PubMed  CAS  Google Scholar 

  • Hatfield L, Hearing P (1991) Redundant elements in the adenovirus type 5 inverted terminal repeat promote bi-directional transcription in vitro and are important for virus growth in vivo. Virology 184: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Hatfield L, Hearing P (1993) The NFIII/OCTI binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences. J Virol 67: 3931–3939

    PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1983a) Functional analysis of the nucleotide sequence surrounding the cap site for adenovirus type 5 region 1A messenger RNAs. J Mol Biol 167: 809–822

    Article  PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1983b) The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell 33: 695–703

    Article  PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1985) Sequence-independent autoregulation of the adenovirus type 5 E1A transcription unit. Mol Cell Biol 5:3214–3221

    PubMed  CAS  Google Scholar 

  • Hearing P, Shenk T (1986) The adenovirus type 5 E1A enhancer contains two functionally distinct domains: one is specific for E1A and the other modulates all early units in cis. Cell 45: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Hen R, Borrelli E, Sassone-Corsi P, Chambon P (1983) An enhancer element is located 340 base pairs upstream from the adenovirus E1A gene. Nucleic Acids Res 11: 8747–8760

    Article  PubMed  CAS  Google Scholar 

  • Herbst RS, Pelletier M, Boczko EM, Babiss LE (1990) The state of cellular differentiation determines the activity of the adenovirus E1A enhancer element: evidence for negative regulation of enhancer function. J Virol 64: 161–172

    PubMed  CAS  Google Scholar 

  • Herr W, Clarke J (1986) The SV40 enhancer is composed of multiple functional elements that can be compensated for one another. Cell 45: 461–470

    Article  PubMed  CAS  Google Scholar 

  • Higashino F, Yoshida K, Fujinaga Y, Kamio K, Fujinaga K (1993) Isolation of a cDNA encoding the adenovirus E1A enhancer binding protein: a new human member of the ets oncogene family. Nucleic Acids Res 21: 547–553

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler JP, Meyer TE, Yun Y, Jameson JL, Habener JF (1988) Cyclic-AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science 242: 1430–1433

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi N, Maguire K, Kralli A, Maldonado E, Reinberg D, Weinmann R (1991) Direct interaction between adenovirus E1A protein and the TATA box binding transcription factor II D. Proc Natl Acad Sci USA 88: 5124–5128

    Article  PubMed  CAS  Google Scholar 

  • Imperiale MJ, Feldman LT, Nevins JR (1983) Activation of gene expression by adenovirus and herpesvirus regulatory genes acting in trans and by a c/s-acting adenovirus enhancer element. Cell 35: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Johnson PF, McKnight SL (1989) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839

    Article  PubMed  CAS  Google Scholar 

  • Jones KA, Kadonaga TJ, Rosenfeld PJ, Kelly TJ, Tjian R (1987) A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979) An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc Natl Acad Sci USA 76: 3665–3669

    Article  PubMed  CAS  Google Scholar 

  • Kao H-T, Nevins JR (1983) Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol Cell Biol 3: 2058–2065

    PubMed  CAS  Google Scholar 

  • Kitchingman GR, Westphal H (1980) The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. J Mol Biol 137:23–48

    Article  PubMed  CAS  Google Scholar 

  • Kovesdi I, Reichel R; Nevins JR (1986) Identification of a cellular transcription factor involved in E1A trans-activation. Cell 45: 219–228

    Article  PubMed  CAS  Google Scholar 

  • Kovesdi I, Reichel R, Nevins JR (1987) Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Proc Natl Acad Sci USA 84: 2180–2184

    Article  PubMed  CAS  Google Scholar 

  • Krippl B, Ferguson B, Rosenberg M, Westphal H (1984) Functions of purified E1A protein microinjected into mammalian cells. Proc Natl Acad Sci USA 81: 6988–6992

    Article  PubMed  CAS  Google Scholar 

  • LaMarco K, Thompson CC, Byers BP; Walton EM, McKnight SL (1991) Identification of Ets-and Notch-related subunits in GA binding protein. Science 253: 789–792

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, Tibbets C (1987) Adenovirus E1A gene autorepression: revenants of an E1A promoter mutation encode altered E1A proteins. Proc Natl Acad Sci USA 84: 8185–8189

    Article  PubMed  CAS  Google Scholar 

  • Larsen PL, McGrane MM, Robinson CC, Tibbetts C (1986) An E1A mutant of adenovirus type 3: Ad3hr15 has reiterated DNA sequences 5′ to its E1A gene. Virology 155: 149–159

    Article  Google Scholar 

  • Lee WS, Kao C, Bryant GO, Liu X, Berk AJ (1991) Adenovirus E1A activation domain binds to the basic repeat in the TATA box transcription factor. Cell 67: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Leff T, Elkaim R, Goding CR, Jalinot P, Sassore-Corsi P, Perricaudet M, Kedinger C, Chambon P (1984) Individual products of the adenovirus 12s and 13s E1a mRNAs stimulate viral E2a and E3 expression at the transcription level. Proc Natl Acad Sci USA 81: 4381–4385

    Article  PubMed  CAS  Google Scholar 

  • Leprince D, Gegonne A, Coll J, de Taisne C, Schneeberger A, Lagrou C, Stehelin D (1983) A putative second cell-derived oncogene of the avian leukemia retrovirus E26. Nature 306: 395–397

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1993) The tumor suppressor genes. Annu Rev Biochem 62: 623–651

    Article  PubMed  CAS  Google Scholar 

  • Leza MA, Hearing P (1988) Cellular transcription factor binds to adenovirus early region promoters and to a cyclic AMP response element. J Virol 62: 3003–3013

    PubMed  CAS  Google Scholar 

  • Lillie JW, Green M, Green MR (1986) An adenovirus E1a protein region required for transformation and transcriptional repression. Cell 46: 1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Lillie JW, Lowenstein P, Green M, Green MR (1987) Functional domains of adenovirus type 5 E1a protein. Cell 50: 1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Green MR (1988) Interaction of a common cellular transcription factor, ATF, with regulatory elements in both E1a- and cyclic AMP-inducible promoters. Proc Natl Acad Sci USA 85: 3396–3400

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Green MR (1994) Promoter targeting by adenovirus E1 a through interaction with different cellular DNA binding domains. Nature 368: 520–525

    Article  PubMed  CAS  Google Scholar 

  • Macleod K, Leprince D, Stehelin D (1992) The ets gene family TIBS 17: 251–256

    CAS  Google Scholar 

  • McKnight SL, Yamamoto KR (eds) (1992) Transcriptional regulation. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Miralies VJ, Cortes P, Stone N, Reinberg D (1989) The adenovirus inverted terminal repeat functions as enhancer in a cell-free systems. J Biol Chem 264: 10763–10772

    Google Scholar 

  • Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Fisher EF, Caruthers MH, Berk AJ (1982) Resolving the functions of overlapping viral genes: site-specific mutagenesis into an mRNA splice site. Nature 295: 380–384

    Article  PubMed  CAS  Google Scholar 

  • Moran E, Mathews MB (1987) Multiple functional domains in the adenovirus E1A gene. Cell 48: 177–178

    Article  PubMed  CAS  Google Scholar 

  • Mul YM, van der Vliet PC (1992) Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. EMBO J 11: 751–760

    PubMed  CAS  Google Scholar 

  • Mul YM, Verrijzer CP, van der Vliet PC (1990) Transcription factors NFI and NFIII/OCT-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J Virol 64: 5510–5518

    PubMed  CAS  Google Scholar 

  • Nevins JR (1981) Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 26: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR, Ginsberg HS, Blanchard JM, Wilson MC, Darnell JE Jr. (1979) Regulation of the primary expression of the early adenovirus transcription units. J Virol 32: 727–733

    PubMed  CAS  Google Scholar 

  • Nunn MF, Seeburg PH, Moscovici C, Duesberg PH (1983) Tripartite structure of the avian eythroblastosis virus E26 transforming gene. Nature 306: 391–395

    Article  PubMed  CAS  Google Scholar 

  • Ondek B, Gloss K, Herr W (1988) The SV40 enhancer contains two distinct levels of organization. Nature 333:40–45

    Article  PubMed  CAS  Google Scholar 

  • O’Neil EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) Transcription factor OTF-1 is functionally identical to the DNA replication factor NF-III. Science 241: 1210–1213

    Article  Google Scholar 

  • Ooyama S, Imai T, Hanaka S, Handa H (1989) Transcription in the reverse orientation at either terminus of the adenovirus type 5 genome. EMBO J 8: 863–868

    PubMed  CAS  Google Scholar 

  • Osborne TF, Arvidson DN, Tyau ES, Dunsworth-Browne M, Berk AJ (1984) Transcriptional control region within the protein-coding portion of adenovirus E1A genes. Mol Cell Biol 4: 1293–1305

    PubMed  CAS  Google Scholar 

  • Perricaudet M, Akusjärvi G, Virtanen A, Petterson U (1979) Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature 281: 694–696

    Article  PubMed  CAS  Google Scholar 

  • Prujin GJM, van der Vliet P, Dathan NA, Mattaj IW (1989) Anti-OTF-1 antibodies inhibit NFIII stimulation of in vitro adenovirus DNA replication. Nucleic Acids Res 17: 1845–1863

    Article  Google Scholar 

  • Ptashne M (1988) How eukaryotic transcriptional activator work. Nature 335: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Bagchi S, Devoto SH, Kraus VB, Moran E, Nevins JR (1991) Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription complexes. Genes Dev 5: 1200–1211

    Article  PubMed  CAS  Google Scholar 

  • Riccardi RP, Jones RL, Cepko CL, Sharp PA, Roberts BE (1981) Expression of early adenovirus genes requires a viral encoded acidic polypeptide. Proc Natl Acad Sci USA 78: 6121–6125

    Article  Google Scholar 

  • Rochette-Egly C, Fromental C, Chambon P (1990) General repression of enhancer activity by the adenovirus-2 E1A proteins. Genes Dev 4: 137–150

    Article  PubMed  CAS  Google Scholar 

  • Roesler WJ, Vandenback GR, Hanson RW (1988) Cyclic AMP and the induction of eukaryotic gene transcription. J Biol Chem 236: 9063–9066

    Google Scholar 

  • Rosenfeld PJ, O’Neil E, Wides RJ, Kelly TJ (1987) Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 7: 875–886

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Hen R, Borrelli E, Leff T, Chambon P (1983) Far upstream sequences are required for efficient transcription from the adenovirus-2 E1A transcription unit. Nucleic Acids Res 11: 8735–8745

    Article  PubMed  CAS  Google Scholar 

  • Schneider JF, Fisher F, Goding CR, Jones NC (1987) Mutational analysis of the adenovirus E1a gene: the role of transcriptional regulation in transformation. EMBO J 6: 2053–2060

    PubMed  CAS  Google Scholar 

  • Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, van der Eb AJ (1983) Expression of class I major histocompatibility antigens switched off by high oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771–776

    Article  PubMed  CAS  Google Scholar 

  • Shinagawa M, Padmanabhan R (1980) Comparative sequence analysis of the inverted terminal repetitions from different adenovirus serotypes. Pro Natl Acad Sci USA 77: 3831–3835

    Article  CAS  Google Scholar 

  • Smith DH, Kegler DM, Ziff EB (1985) Vector expression of adenovirus type 5 E1 a proteins: evidence for E1a autorepression. Mol Cell Biol 5: 2684–2696

    PubMed  CAS  Google Scholar 

  • Smith DH, Velcich A, Kegler D, Ziff E (1986) Transcriptional control by the adenovirus type 5 E1A proteins. Cancer Cell 4: 217–225

    CAS  Google Scholar 

  • Stein R, Ziff EB (1984) HeLa cellβ-tubulin gene transcription is stimulated by adenovirus-5 in parallel with viral early genes by an E1a-dependent mechanism. Mol Cell Biol 4: 2792–2801

    PubMed  CAS  Google Scholar 

  • Stein R, Ziff EB (1987) Repression of insulin gene expression by adenovirus type 5 E1a protein. Mol Cell Biol 7: 1164–1170

    PubMed  CAS  Google Scholar 

  • Stillman B (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5: 197–245

    Article  PubMed  CAS  Google Scholar 

  • Svenson B, Akusjärvi G (1984) Adenovirus 2 early region 1A stimulates expression of both viral and cellular genes. EMBO J 3: 789–794

    Google Scholar 

  • Temperley SM, Hay RT (1992) Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–768

    PubMed  CAS  Google Scholar 

  • Thompson CC, Brown TA, McKnight SL (1991) Convergence of ets- and notch-related structural motifs in a heteromeric DNA binding complex. Science 253: 762–768

    Article  PubMed  CAS  Google Scholar 

  • Vaessen RTMJ, Houweling A, van der Eb AJ (1987) Post-transcriptional control of class I MHC mRNA expression in adenovirus 12-transformed cells. Science 235: 1486–1488

    Article  PubMed  CAS  Google Scholar 

  • Van Ormondt H, Galibert F (1984) Nucleotide sequences of adenovirus DNAs. In: Doefler W (ed) The molecular biology of adenovirus 2. (Current topics in microbiology and immunology, vol 110) Springer, Berlin Heidelberg New York, pp 73–143

    Google Scholar 

  • Van Ormondt H, Maat J, Van Beveren CP (1980) The nucleotide sequence of the transforming early region E1 of adenovirus type 5 DNA. Gene 11: 299–309

    Article  PubMed  Google Scholar 

  • Velcich A, Ziff E (1985) Adenovirus E1 a proteins repress transcription from the SV40 early promoter. Cell 40:705–716

    Article  PubMed  CAS  Google Scholar 

  • Velcich A, Kern FG, Basillico C, Ziff EB (1986) Adenovirus E1a proteins repress expression from polyoma-virus early and late promoters. Mol Cell Biol 6: 4019–4025

    PubMed  CAS  Google Scholar 

  • Virtanen A, Petterson U (1983) The molecular structure of the 9s mRNA from early region 1A of adenovirus sero type 2. J Mol Biol 165: 496–499

    Article  PubMed  CAS  Google Scholar 

  • Wasylyk B, Hahn S, Giovane A (1993) The Ets family of transcription factors. Eur J Biochem 211:7–18

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Wada T, Handa H (1990) Transcription factor E4TF1 contains two subunits with different functions. EMBO J 9: 841–847

    PubMed  CAS  Google Scholar 

  • Watanabe H, Sawada J, Yano K, Yamaguchi K, Goto M, Handa H (1993) cDNA cloning of transcription factor E4TF1 subunits with ETS and Notch motif. Mol Cell Biol 13: 1385–1391

    PubMed  CAS  Google Scholar 

  • Weeks DL, Jones NC (1983) E1A control of gene expression is mediated by sequence 5′ to the transcriptional starts of the early viral genes. Mol Cell Biol 3: 1222–1234

    PubMed  CAS  Google Scholar 

  • Whyte P, Ruley HE, Harlow E (1988) Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62: 257–265

    PubMed  CAS  Google Scholar 

  • Whyte P, Williamson NM, Harlow E (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Winberg G, Shenk T(1985) Dissection of overlapping functions within the adenovirus type 5 ElA gene. EMBO J 3: 1907–1912

    Google Scholar 

  • Xin JH, Cowie A, Lachance P, Hassell AJ (1992) Molecular cloning and characterization of PEA3, a new member of the ETS oncogene family that is differentially expressed in mouse embryogenesis. Genes Dev 6: 481–496

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Shimada Y, Sakurai SH, Masamune Y, Nakanishi Y (1992) Multiple cis-acting DNA elements that regulate transcription of the adenovirus 12 E1A gene. Virus Genes 6: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Narita M, Fujinaga K (1989) Binding sites of HeLa cell nuclear proteins on the upstream region of adenovirus type 5 E1A gene. Nucleic Acids Res 17: 10015–10034

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Sugawara Y, Higashino F, Fujinaga K (1990) Potential activity of transcriptional promoter in the replication origin region of adenovirus type 5 DNA. Tumor Res 25: 69–84

    CAS  Google Scholar 

  • Zenke M, Grundtstrom T, Matthes H, Wintzereith M, Schatz C, Wildeman A, Chambon P (1986) Multiple sequence motifs are involved in SV40 enhancer function. EMBO J 5: 378–397

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshida, K., Higashino, F., Fujinaga, K. (1995). Transcriptional Regulation of the Adenovirus E1A Gene. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses III. Current Topics in Microbiology and Immunology, vol 199/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79586-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79586-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79588-6

  • Online ISBN: 978-3-642-79586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics