Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/3))

Abstract

Most of the human adenoviruses have been associated with infections of the respiratory tract, but it has long been recognised that adenoviruses can be shed via the gastrointestinal tract and that a proportion of these would not replicate in the cell lines routinely used for adenovirus isolation and propagation. This led to the discovery of the enteric or fastidious adenoviruses, which were recognised initially by the large numbers seen in faecal extracts, that were not amenable to cultivation. Extensive characterisation of these viruses has led to the classification of two serotypes, adenoviruses type 40 (Ad40) and type 41 (Ad41), comprising subgroup F. The purpose of this chapter is to provide an overview of these viruses and to discuss in detail our current understanding of their molecular properties, particularly in the context of the recently established complete genome sequence of Ad40 (Davison et al. 1993). Other recent reviews include those by Albert (1986), Horwitz (1990), Wadell et al. (1987, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian T, Wigand R (1989) Genome type analysis of adenovirus 31, a potential causative agent of infants enteritis. Arch Virol 105: 81–87

    PubMed  CAS  Google Scholar 

  • Adrian T, Wadell G, Hierholzer JC, Wigand R (1986) DNA restriction analysis of adenovirus prototypes 1 to 41. Arch Virol 91: 277–290

    PubMed  CAS  Google Scholar 

  • Akhter J, Quadri HSM (1993) Incidence of adenovirus- associated diarrheal disease at a tertiary care hospital in Riyadh. J Exp Med 21: 295–296

    Google Scholar 

  • Albert M J (1986) Enteric adenoviruses. Arch Virol 88: 1–17

    PubMed  CAS  Google Scholar 

  • Allard A, Wadell G (1988) Physical organisation of the enteric adenovirus type 41 early region 1A. Virology 164: 220–229

    PubMed  CAS  Google Scholar 

  • Allard A, Wadell G (1992) The E1B transcription map of the enteric adenovirus type 41. Virology 183: 319–330

    Google Scholar 

  • Allard A, Girones R, Juto P, Wadell G (1990) Polymerase chain reaction for detection of adenoviruses in stool samples. J Clin Microbiol 28: 2659–2667

    PubMed  CAS  Google Scholar 

  • Allard A, Albinsson B, Wadell G (1992) Detection of adenoviruses in stools from healthy persons and patients with diarrhea by two-step polymerase chain reaction. J Med Virol 37: 149–157

    PubMed  CAS  Google Scholar 

  • Arató A, Kósnai I, Szönyi L, Tóth M (1991) Frequent past exposure to adenovirus 12 in coeliac disease. Acta Paediatr Scand 80: 1101–1102

    PubMed  Google Scholar 

  • Babiss LE, Young CSH, Fisher PB, Ginsberg HS (1983) Expression of adenovirus E1A and E1B gene products and the Escherichia coli XGPRT gene in KB cells. J Virol 46: 454–465

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS (1984) Adenovirus type 5 early region 1b gene product is required for efficient shutoff of host protein synthesis. J Virol 50: 202–212

    PubMed  CAS  Google Scholar 

  • Babiss LE, Ginsberg HS, Darnell JE (1985) Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 5: 2552–2558

    PubMed  CAS  Google Scholar 

  • Bailey A, Mackay N, Mautner V (1993) Enteric adenovirus type 40: Expression of E1b proteins in vitro and in vivo. Virology 193: 631–641

    PubMed  CAS  Google Scholar 

  • Bailey A, Ullah R, Mautner V (1994) Cell type specific regulation of expression from the E1 B promoter in recombinant Ad5/Ad40 viruses. Virology 202: 695–706

    PubMed  CAS  Google Scholar 

  • Bailey A, Mautner V (1994) Phylogenetic relationships among adenovirus serotypes. Virology 205: 438–452

    PubMed  CAS  Google Scholar 

  • Bhisitkul DM, Todd KM, Listemick R (1992) Adenovirus infection and childhood intussuception. Am J Dis Child 146: 1331–1333

    PubMed  CAS  Google Scholar 

  • Boulanger P, Blair GE (1991) Expression and interactions of human adenovirus oncoproteins. Biochem J 275: 281–299

    PubMed  CAS  Google Scholar 

  • Brandt CD, Kim HW, Yolken RH, Kapikian AZ, Arrobio JO, Rodriguez WJ, Wyatt RG, Chanock RM, Parrott RH (1979) Comparative epidemiology of two rotavirus serotypes and other viral agents associated with pediatric gastroenteritis. Am J Epidemiol 110: 243–254

    PubMed  CAS  Google Scholar 

  • Brandt CD, Kim HW, Rodriguez WJ, Arobio JO, Jeffries BC, Stallings EP, Lewis C, Miles AJ, Gardner MK, Parrott RH (1985) Adenoviruses and paediatric gastroenteritis. J Infect Dis 151: 437–443

    PubMed  CAS  Google Scholar 

  • Breiding DE, Edbauer CA, Tong JY, Byrd PJ, Grand RJA, Gallimore PH, Williams J (1988) Isolation and characterization of adenovirus type 12E1 host-range mutants defective for growth in nontransformed human cells. Virology 164: 390–402

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1989) Redundant control of adenovirus late gene expression by early region 4. J Virol 63:631–638

    PubMed  CAS  Google Scholar 

  • Bridge E, Ketner G (1990) Interaction of adenoviral E4 and E1B products in late gene expression. Virology 174:345–353

    PubMed  CAS  Google Scholar 

  • Brown M (1990) Laboratory identification of adenoviruses associated with gastroenteritis in Canada from 1983 to 1986. J Clin Microbiol 28: 1525–1529

    PubMed  CAS  Google Scholar 

  • Brown M, Petric M, Middleton PJ (1984) Diagnosis of fastidious enteric adenoviruses 40 and 41 in stool specimens. J Clin Microbiol 20: 334–338

    PubMed  CAS  Google Scholar 

  • Brown M, Wilson-Friesen HL, Doane F (1992) A block in release of progeny virus and a high particle-to-infectious unit ratio contribute to poor growth of enteric adenovirus types 40 and 41 in cell culture. J Virol 66: 3198–3205

    PubMed  CAS  Google Scholar 

  • Brunet LJ, Berk AJ (1988) Concentration dependence of transcriptional activation in inducible E1A-containing human cells. Mol Cell Biol 8: 4799–4807

    PubMed  CAS  Google Scholar 

  • Chiba S, Nakata S, Nakamura I, Taniguchi K, Urasawa S, Fujinaga K, Nakao T (1983) Outbreak of infantile gastroenteritis due to type 40 adenovirus. Lancet 2: 954–957

    PubMed  CAS  Google Scholar 

  • Chroboczek J, Bieber F, Jacrot B (1992) The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186: 280–285

    PubMed  CAS  Google Scholar 

  • Cladras C, Wold WSM (1985) DNA sequence of the early E3 transcription unit of adenovirus 5. Virology 140:28–43

    Google Scholar 

  • Cousin C, Winter N, Gomes S, D’Halluin JC (1991) Cellular transformation by E1 genes of enteric adenoviruses. Virology 181: 277–287

    PubMed  CAS  Google Scholar 

  • Cruz JR, Caceres P, Cano F, Flores J, Bartlett A, Torun B (1990) Adenovirus types 40 and 41 and rotaviruses associated with diarrhea in children from Guatemala. J Clin Microbiol 28: 1780–1784

    PubMed  CAS  Google Scholar 

  • Davison AJ, Telford EAR, Watson MS, McBride K, Mautner V (1993) The DNA sequence of adenovirus type 40. J Mol Biol 234: 1308–1316

    PubMed  CAS  Google Scholar 

  • de Jong JC, Wigand R, Kidd AH, Wadell G, Kapsenberg JG, Muzerie AG, Wermenbol AG, Firtzlaff R-G (1983) Candidate adenoviruses 40 and 41: fastidious adenoviruses from human infant stool. J Med Virol 11: 215–231

    PubMed  Google Scholar 

  • de Jong JC, Bijlsma K, Wermenbol AG, VerweijUijterwaal MW, van der Avoort HGAM, Wood DJ, Bailey AS, Osterhaus ADME (1993) Detection, typing, and subtyping of enteric adenoviruses 40 and 41 from fecal samples and observations of changing incidence of infections with these types and subtypes. J Clin Microbiol 31: 1562–1569

    PubMed  Google Scholar 

  • Devery JM, Bender V, Penttila I, Skerritt JH (1991) Identification of reactive synthetic gliadin peptides specific for coeliac disease. Int J Allergy Appi Immunol 95: 356–362

    CAS  Google Scholar 

  • Dieleman LA, Pena AS, van Doorninck JH, Mearin ML, van Duijn W, Lamers CBHW (1991) No humoral response to the E1B-54kD protein of adenovirus 12 in patients with coeliac disease. Eur J Gastroenterol Hepatol 3: 255–257

    Google Scholar 

  • Ellis HJ, Doyle AP, Sturgess RP, Ciclitira PJ (1992) Coeliac disease: characterisation of monoclonal antibodies raised against a synthetic peptide corresponding to amino acid residues 206–217 of A-gliadin. Gut 33: 1504–1507

    PubMed  CAS  Google Scholar 

  • Estes MK, Palmer EL, Obijeski JF (1983) Rotaviruses: a review. In: Compans RW, Cooper M, Koprowski H et al. (eds) Current topics in microbiology and immunology, vol 105. Springer, Berlin Heidelberg New York, pp 123–184

    Google Scholar 

  • Everett RD (1987) The regulation of transcription of viral and cellular genes by herpes virus immediate early gene products. Anticancer Res 7: 589–604

    PubMed  CAS  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155: 279–284

    PubMed  CAS  Google Scholar 

  • Flewett TH, Bryden AS, Davies HA, Morris CA (1975) Epidemic viral enteritis in a long-stay childrens ward. Lancet 1: 4–5

    PubMed  Google Scholar 

  • Fox JP, Hall CE, Cooney MK (1977) The Seattle virus watch VII. Observations of adenovirus infections. Am J Epidemiol 105: 362–386

    PubMed  CAS  Google Scholar 

  • Fukui Y, Shiroki K, Saito I, Shimojo H (1984) Characterization of a host range mutant of human adenovirus 12 defective in early region 1B. J Virol 50: 132–136

    PubMed  CAS  Google Scholar 

  • Gary GW Jr, Hierholzer JC, Black RE (1979) Characterization of noncultivable adenoviruses associated with diarrhea in infants: a new subgroup of human adenoviruses. J Clin Microbiol 10: 96–103

    PubMed  Google Scholar 

  • Gazzard B, Blanshard C (1993) Diarrhea in AIDS and other immunodeficiency states. Baillieres Clin Gastroenterol 7: 387–419

    PubMed  CAS  Google Scholar 

  • Gilbert DA, Reid YA, Gail MH, Pee D, White C, Hay RJ, O’Brien SJ (1990) Application of DNA fingerprints for cell-line individualization. Am J Hum Genet 47: 499–514

    PubMed  CAS  Google Scholar 

  • Ginsberg HS (1984) The adenoviruses, 1st edn. Plenum, New York

    Google Scholar 

  • Glenn GM, Ricciardi RP (1988) Detailed kinetics of adenovirus type-5 steady-state transcripts during early infection. Virus Res 88: 73–91

    Google Scholar 

  • Gomes SA, Niel C, D’Halluin JC (1992) Growth of fastidious adenovirus serotype 40 in HRT 18 cells: interactions with E1A and E1B deletion mutants of subgenus C adenoviruses. Arch Virol 124:45–56

    PubMed  CAS  Google Scholar 

  • Grabow WOK, Puttergill DL, Bosch A (1992) Propagation of adenovirus types 40 and 41 in the PLC/PRF/5 primary liver carcinoma cell line. J Virol Methods 37: 201–208

    PubMed  CAS  Google Scholar 

  • Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59–72

    PubMed  CAS  Google Scholar 

  • Handley J, O’Neill H, Connolly J, Burrows D (1993) Adenovirus-12 and dermatitis herpetiformis. Acta Derm Venereol 73: 430–432

    PubMed  CAS  Google Scholar 

  • Hashimoto S, Sakakibara N, Kumai H, Nakai M, Sakuma S, Chiba S, Fujinaga K (1991) Fastidious adenovirus type 40 can propagate efficiently and produce plaques on a human cell line, A549, derived from lung carcinoma. J Virol 65: 2429–2435

    PubMed  CAS  Google Scholar 

  • Hermann JE, Blacklow NR, Perron-Henry DM, Clements E, Taylor DN, Echeverria P (1988) Incidence of enteric adenoviruses among children in Thailand and the significance of these viruses in gastroenteritis. J Clin Microbiol 26: 1783–1786

    Google Scholar 

  • Hierholzer JC (1992) Adenoviruses in the immunocompromised host. Clin Microbiol Rev 5: 262–274

    PubMed  CAS  Google Scholar 

  • Hierholzer JC, Wigand R, de Jong JC (1988) Evaluation of human adenoviruses 38, 39, 40 and 41 as new serotypes. Intervirology 29: 1–10

    PubMed  CAS  Google Scholar 

  • Hitt MM, Graham FL (1990) Adenovirus E1A under the control of heterologous promoters: wide variation in E1A expression has little effect on virus replication. Virology 179: 667–678

    PubMed  CAS  Google Scholar 

  • Horwitz MS (1990) Adenoviruses. In: Fields BN, Knipe DM (ed) Virology, 2nd edn. Raven, New York, pp 1723–1740

    Google Scholar 

  • Howdle PD, Blair GE (1992) Molecular biology and coeliac disease. Gut 33: 573–575

    CAS  Google Scholar 

  • Howdle PD, Blair GE (1994) Molecular pathogenesis of coeliac disease. In: Quirke P (ed) The molecular biology of digestive diseases. BMJ, London

    Google Scholar 

  • Huang M, Hearing P (1989) Adenovirus early region 4 encodes two gene products with redundant effects in lytic infection. J Virol 63: 2605–2615

    PubMed  CAS  Google Scholar 

  • Hynes RO (1992) Integrins: verstility, modulation, and signaling in cell adhesion. Cell 69: 11–25

    PubMed  CAS  Google Scholar 

  • Ishino M, Sawada Y, Yaegashi T, Demura M, Fujinaga K (1987) Nucleotide sequence of the adenovirus type 40 inverted terminal repeat: close relation to that of adenovirus type 5. Virology 156: 414–416

    PubMed  CAS  Google Scholar 

  • Ishino M, Ohashi Y, Emoto T, Sawada Y, Fujinaga K (1988) Characterization of adenovirus type 40 E1 region. Virology 165: 95–102

    PubMed  CAS  Google Scholar 

  • Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R (1990) GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 63: 155–165

    PubMed  CAS  Google Scholar 

  • JareckiKahn K, Unicomb LE (1992) Seroprevalence of enteric and nonenteric adenoviruses in Bangladesh. J Clin Microbiol 30: 2733–2734

    Google Scholar 

  • JareckiKahn K, Tzipori SR, Unicomb LE (1993) Enteric adenovirus infection among infants with diarrhea in rural Bangladesh. J Clin Microbiol 31: 484–489

    Google Scholar 

  • Johansson ME, Uhnoo I, Kidd AH, Madeley CR, Wadell G (1980) Direct identification of enteric adenovirus, a candidate new serotype associated with infantile gastroenteritis. J Clin Microbiol 12: 95–100

    PubMed  CAS  Google Scholar 

  • Johansson ME, Uhnoo I, Svensson L, Pettersson CA, Wadell G (1985) Enzyme-linked immunosorbent assay for detection of enteric adenovirus 41. J Med Virol 17: 19–27

    PubMed  CAS  Google Scholar 

  • Kagnoff MF (1989) Celiac disease: adenovirus and alpha gliadin. In: Oldstone MB (ed) Molecular mimicry. Cross-reactivity between microbes and host proteins as a cause of autoimmunity. Springer, Berlin Heidelberg New York, pp 67–78 (Current topics in microbiology and immunology, vol 145)

    Google Scholar 

  • Kagnoff MF, Austin RK, Hubert JJ, Bernardin JE, Kasarda DD (1984) Possible role for a human adenovirus in the pathogenesis of celiac disease. J Exp Med 160: 1544–1557

    PubMed  CAS  Google Scholar 

  • Kagnoff MF, Paterson YJ, Kumar PJ, Kasarda DD, Carbone FR, Unsworth DJ, Austin RK (1987) Evidence for the role of a human intestinal adenovirus in the pathogenesis of celiac-disease. Gut 28: 995–1001

    PubMed  CAS  Google Scholar 

  • Ketner G, Bridge E, Virtanen A, Hemstrom C, Pettersson U (1989) Complementation of adenovirus E4 mutants by transient expression of E4 cDNA and deletion mutants. Nucleic Acids Res 17: 3037–3048

    PubMed  CAS  Google Scholar 

  • Kidd AH (1984) Genome variants of adenovirus 41 (subgroup G) from children with diarrhea in South Africa. J Med Virol 14:49–59

    PubMed  CAS  Google Scholar 

  • Kidd AH, Erasmus MJ (1989) Sequence characterization of the adenovirus 40 fibre gene. Virology 172: 134–144

    PubMed  CAS  Google Scholar 

  • Kidd AH, Madeley CR (1981) In vitro growth of some fastidious adenoviruses from stool specimens. J Clin Pathol 34: 213–216

    PubMed  CAS  Google Scholar 

  • Kidd AH, Tiemessen CT (1993) Characterization of a single SA7-like VA RNA gene in subgroup F adenoviruses. J Gen Virol 74: 1621–1626

    PubMed  CAS  Google Scholar 

  • Kidd AH, Banatvala JE, de Jong JC (1983) Antibodies to fastidious faecal adenoviruses (species 40 and 41) in sera from children. J Med Virol 11: 333–341

    PubMed  CAS  Google Scholar 

  • Kidd AH, Berkowitz FE, Blaskovic PJ, Schoub BD (1984) Genome variants of human adenovirus 40 (subgroup F). J Exp Med 14: 235–246

    CAS  Google Scholar 

  • Kidd AH, Harley EH, Erasmus MJ (1985) Specific detection and typing of adenovirus types 40 and 41 in stool specimens by dot-blot hybridization. J Clin Microbiol 22: 934–939

    PubMed  CAS  Google Scholar 

  • Kidd AH, Rosenblatt A, Besselaar TG, Erasmus MJ, Tiemessen CT, Berkowitz FE, Schoub BD (1986) Characterization of rotaviruses and subgroup F adenoviruses from acute summer gastroenteritis in South Africa. J Med Virol 18: 159–168

    PubMed  CAS  Google Scholar 

  • Kidd AH, Erasmus MJ, Tiemessen CT (1990) Fibre sequence heterogeneity in subgroup F adenoviruses. Virology 179: 139–150

    PubMed  CAS  Google Scholar 

  • Kidd AH, Chroboczek J, Cusack S, Ruigrok RWH (1993) Adenovirus type 40 virions contain two distinct fibers. Virology 192:73–84

    PubMed  CAS  Google Scholar 

  • Kim KH, Yang JM, Joo SI, Cho YG, Glass RI, Cho YJ (1990) Importance of rotavirus and adenovirus types 40 and 41 in acute gastroenteritis in Korean children. J Clin Microbiol 28: 2279–2284

    PubMed  CAS  Google Scholar 

  • Kimelman D, Miller JS, Porter JD, Roberts BE (1985) E1A regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J Virol 53: 399–409

    PubMed  CAS  Google Scholar 

  • Kinloch R, Mackay N, Mautner V (1984) Adenovirus hexon. Sequence comparison of subgroup C serotypes 2 and 5. J Biol Chem 259: 6431–6436

    PubMed  CAS  Google Scholar 

  • Kotloff KL, Wasserman SS, Steciak JY, Tall BD, Losonsky GA, Nair P, Morris JG Jr, Levine MM (1988) Acute diarrhea in Baltimore children attending an outpatient clinic. Paediatr Infect Dis 7: 753–759

    CAS  Google Scholar 

  • Kotloff KL, Losonsky GA, Morris JG Jr, Wasserman SS, Singh-Naz N, Levine MM (1989) Enteric adenovirus infection and childhood diarrhea: an epidemiologic study in three clinical settings. Pediatrics 84: 219–225

    PubMed  CAS  Google Scholar 

  • Krajden M, Brown M, Petrasek A, Middleton PJ (1990) Clinical features of adenovirus enteritis: a review of 127 cases. Paediatr Infect Dis 9: 636–641

    CAS  Google Scholar 

  • Lädheaho ML, Lehtinen M, Rissa HR, Hyoty H, Reunala T, Mäki M (1993a) Antipeptide antibodies to adenovirus E1b protein indicate enhanced risk of celiac disease and dermatitis herpetiformis. Int Arch Allergy Immunol 101: 272–275

    Google Scholar 

  • Lädheaho ML, Parkkonen P, Reunala T, Mäki M, Lehtinen M (1993b) Antibodies to E1B protein-derived peptides of enteric adenovirus type-40 are associated with celiac disease and dermatitis herpetiformis. Clin Immunol Immunopathol 69: 300–305

    Google Scholar 

  • Larsen LP, Tibbetts C (1987) Adenovirus E1A gene autoregulation: Revertants of an E1A promoter mutation encode altered E1A products. Proc Natl Acad Sci USA 84: 8185–8189

    PubMed  CAS  Google Scholar 

  • Laver WG, Younghusband HB, Wrigley NG (1971) Purification and properties of chick embryo lethal orphan virus (an avian adenovirus). Virology 45: 598–614

    PubMed  CAS  Google Scholar 

  • Leite JP, Pereira HG, Azeredo RS, Schatzmayr HG (1985) Adenoviruses in faeces of children with acute gastroenteritis in Rio de Janeiro, Brazil. J Med Virol 15: 203–209

    PubMed  CAS  Google Scholar 

  • Leite JPG, Niel C, D’Halluin JC (1986) Expression of the chloramphenicol acetyl transferase gene in human cells under the control of early adenovirus subgroup C promoters: effect of E1A gene products from other subgroups on gene expression. Gene 41: 207–215

    PubMed  CAS  Google Scholar 

  • Leppard KN, Shenk T (1989) The adenovirus E1B 55kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J 8: 2329–2336

    PubMed  CAS  Google Scholar 

  • Lew JF, Moe CL, Monroe SS, Allen JR, Harrison BM, Forrester BD, Stine SE, Woods PA, Hierholzer JC, Hermann JE, Blacklow NR, Bartlett AV, Glass RI (1991) Astrovirus and adenovirus associated with diarrhea in children in day care settings. J Infect Dis 164: 673–678

    PubMed  CAS  Google Scholar 

  • Maddox A, Francis N, Moss J, Blanshard C, Gazzard B (1992) Adenovirus infection of the large bowel in HIV positive patients. J Clin Pathol 45: 684–688

    PubMed  CAS  Google Scholar 

  • Mahon J, Blair GE, Wood GM, Scott BB, Losowsky MS, Howdle PD (1991) Is persistent adenovirus 12 infection involved in coeliac disease? A search for viral DNA using the polymerase chain reaction. Gut 32: 1114–1116

    PubMed  CAS  Google Scholar 

  • Mak I, Mak S (1990) Separate regions of an adenovirus E1B protein critical for different biological functions. Virology 176: 553–562

    PubMed  CAS  Google Scholar 

  • Mantzaris G, Jewell DP (1991) In vivo toxicity of a synthetic dodecapeptide from A gliadin in patients with coeliac disease. Scand J Gastroenterol 26: 392–398

    PubMed  CAS  Google Scholar 

  • Mantzaris GJ, Karagiannis JA, Priddle JD, Jewell DP (1990) Cellular hypersensitivity to a synthetic dodecapeptide derived from human adenovirus 12 which resembles a sequence of A-gliadin in patients with coeliac disease. Gut 31: 668–673

    PubMed  CAS  Google Scholar 

  • Mautner V, Mackay N (1991) Enteric adenovirus type 40: Complementation of the E4 defect in Ad2 dl808. Virology 183: 433–436

    PubMed  CAS  Google Scholar 

  • Mautner V, Mackay N, Steinthorsdottir V (1989) Complementation of enteric adenovirus type 40 for lytic growth in tissue culture by E1B 55K function of adenovirus types 5 and 12. Virology 171: 619–622

    PubMed  CAS  Google Scholar 

  • Mautner V, Mackay N, Morris K (1990) Enteric adenovirus type 40: expression of E1B mRNA and proteins in permissive and non-permissive cells. Virology 179: 129–138

    PubMed  CAS  Google Scholar 

  • Mistchenko AS, Huberman KH, Gomez JA, Grinstein S (1992) Epidemiology of enteric adenovirus infection in prospectively monitored Argentine families. Epidemiol Infect 109: 539–546

    PubMed  CAS  Google Scholar 

  • Montell C, Fisher EF, Caruthers MH, Berk AJ (1984) Control of adenovirus E1B mRNA synthesis by a shift in the activities of RNA splice sites. Mol Cell Biol 4: 966–972

    PubMed  CAS  Google Scholar 

  • Montgomery EA, Popek EJ (1994) Intussusception, adenovirus, and children: A brief reaffirmation. Hum Pathol 25: 169–174

    PubMed  CAS  Google Scholar 

  • Noel J, Mansoor A, Thaker J, Herrmann J, Perron-Henry D, Cubitt WD (1994) Identification of adenoviruses in faeces from patients with diarrhea at the Hospitals for Sick Children, London, 1989–1992. J Med Virol 43: 84–90

    PubMed  CAS  Google Scholar 

  • O’Malley RP, Duncan RF, Hershey JBW, Mathews MB (1989) Modification of protein synthesis initiation factors and the shutt-off of the host protein synthesis in adenovirus-infected cells. Virology 168: 112–118

    PubMed  Google Scholar 

  • Parks CL, Spector DJ (1990) Cis-dominant defect in activation of adenovirus type 5 E1B early RNA synthesis. J Virol 64: 2780–2787

    PubMed  CAS  Google Scholar 

  • Parks CL, Banerjee S, Spector DJ (1988) Organization of the transcriptional control region of the E1B gene of adenovirus type 5. J Virol 62: 54–67

    PubMed  CAS  Google Scholar 

  • Pieniazek D, Pieniazek NJ, Macejak D, Coward J, Rayfield M, Luftig RB (1990a) Differential growth of human enteric adenovirus 41 (TAK) in continuous cell lines. Virology 174: 239–249

    PubMed  CAS  Google Scholar 

  • Pieniazek D, Pieniazek NJ, Macejak D, Luftig RB (1990b) Enteric adenovirus 41 (Tak) requires low serum for growth in human primary cells. Virology 178: 72–80

    PubMed  CAS  Google Scholar 

  • Pieniazek NJ, Slemenda SB, Pieniazek D, Velarde J Jr, Luftig RB (1989) Sequence of the human enteric adenovirus type 41 Tak fibre protein gene. Nucleic Acids Res 17: 9474

    PubMed  CAS  Google Scholar 

  • Pieniazek NJ, Slemenda SB, Pieniazek D, Velarde J Jr, Luftig RB (1990) Human enteric adenovirus type 41 (Tak) contains a second fibre protein gene. Nucleic Acids Res 18: 1901

    PubMed  CAS  Google Scholar 

  • Pilder S, Moore M, Logan J, Shenk T (1986) The adenovirus E1B 55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol 6: 470–476

    PubMed  CAS  Google Scholar 

  • Porter HJ, Padfield CDH, Peres LC, Hirschowitz L, Berry PJ (1993) Adenovirus and intranuclear inclusions in appendices in intussusception. J Clin Pathol 46: 154–158

    PubMed  CAS  Google Scholar 

  • PringAkerblom P, Adrian T (1993) The hexon genes of adenoviruses of subgenus C: comparison of the variable regions. Res Virol 144: 117–127

    CAS  Google Scholar 

  • PringAkerblom P, Adrian T (1994) Type- and group-specific polymerase chain reaction for adenovirus detection. Res Virol 145: 25–35

    CAS  Google Scholar 

  • Rao RN, Debbas M, Sabbatinit P, Hockenberry D, Korsmeyer S, White E (1992) The adenovirus E1A proteins induce apoptosis, which is inhibited by the adenovirus E1B 19kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 89: 7743–7746

    Google Scholar 

  • Regua-Mangia AH, Duarte AN, Duarte R, Silva LA, Bravo VLR, Leal MC (1993) Aetiology of acute diarrhea in hospitalized children in Rio de Janeiro. J Tropical Pediatr 93: 365–367

    Google Scholar 

  • Retter M, Middleton PJ, Tarn JS, Petrie M (1979) Enteric adenoviruses: detection, replication and significance. J Clin Microbiol 10: 574–578

    PubMed  CAS  Google Scholar 

  • Roberts MM, White JL, Grutter MG, Burnett RM (1986) Three-dimensional structure of the adenovirus major coat protein hexon. Science 232: 1148–1151

    PubMed  CAS  Google Scholar 

  • Roberts RJ, Aküsjarvi G, Aleström P, Gelinas RE, Gingeras TR, Sciaki D, Pettersson U (1986) A consensus sequence for the adenovirus-2 genome. In: Doerfler W (ed) Adenovirus DNA. Nijhoff, Boston, pp 1–51

    Google Scholar 

  • Rodriguez WJ, Kim JW, Brandt CD et al (1985) Fecal adenoviruses from a longitudinal study of families in metropolitan Washington DC: laboratory, clinical, and epidemiologic observations. J Pediatr 107: 514–520

    PubMed  CAS  Google Scholar 

  • Schmitz H, Wigand R, Heinrich W (1983) Worldwide epidemiology of human adenovirus infections. Am J Epidemiol 117: 455–466

    PubMed  CAS  Google Scholar 

  • ScottTaylor TH, Ahluwalia G, Dawood M, Hammond GW (1993) Detection of enteric adenoviruses with synthetic oligonucleotide probes. J Med Virol 41: 328–337

    CAS  Google Scholar 

  • Seed B, Sheen J-Y (1988) A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene 67: 271–277

    PubMed  CAS  Google Scholar 

  • Sethi SK, Khuffash FA, AINakib W (1989) Microbial etiology of acute gastroenteritis in hospitalized children in Kuwait. Pediatr Infect Dis J 8: 593–597

    PubMed  CAS  Google Scholar 

  • Sheppard M, Trist H (1992) Characterization of the avian adenovirus penton base. Virology 188:881–886

    PubMed  CAS  Google Scholar 

  • Shinagawa M, Lida Y, Matsuda A, Tsukiyama T, Sato G (1987) Phylogenetic relationships between adenoviruses as inferred from nucleotide sequences of inverted terminal repeats. Gene 55: 85–93

    PubMed  CAS  Google Scholar 

  • Shinozaki T, Araki K, Ushijima H, Fujii R (1987) Antibody responses to enteric adenovirus types 40 and 41 in sera from people in various age groups. J Clin Microbiol 25: 1679–1682

    PubMed  CAS  Google Scholar 

  • Shinozaki T, Araki K, Fujita Y, Kobayashi M, Tajima T, Abe T (1991) Epidemiology of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and young children in the Tokyo area. Scand J Infect Dis 23: 543–547

    PubMed  CAS  Google Scholar 

  • Shiroki K, Ohshima K, Fukui Y, Ariga H (1986) The adenovirus type 12 early-region 1B 58,000-Mr gene product is required for viral DNA synthesis and for initiation of cell transformation. J Virol 57:792–801

    PubMed  CAS  Google Scholar 

  • Signäs C, Akusjärvi G, Pettersson U (1986) Region E3 of human adenoviruses; differences between the ongcogenic adenovirus-3 and the non-oncogenic adenovirus-2. Gene 50: 173–184

    PubMed  Google Scholar 

  • Spector DJ, Parks CL, Knittle RA (1993) A multi-component cis-activator of transcription of the E1b gene of adenovirus type 5. Virology 194: 128–136

    PubMed  CAS  Google Scholar 

  • Sprengel J, Schmitz B, Heuss-Neitzel D, Zock C, Doerfler W (1994) Nucleotide sequence of human adenovirus type 12 DNA: comparative functional analysis. J Virol 68: 379–389

    PubMed  CAS  Google Scholar 

  • Steinthorsdottir V (1991) Adenovirus type 40 host range in tissue culture. A study of the E1B region. PhD thesis, University of Glasgow

    Google Scholar 

  • Steinthorsdottir V, Mautner V (1991) Enteric adenovirus type 40: E1B transcription map and novel E1A-E1B co-transcripts in lytically infected cells. Virology 181: 139–149

    PubMed  CAS  Google Scholar 

  • Takiff HE, Straus SE (1982) Early replicative block prevents the efficient growth of fastidious diarrhea-associated adenoviruses in cell culture. J Med Virol 9: 93–100

    PubMed  CAS  Google Scholar 

  • Takiff HE, Straus SE, Garon CF (1981) Propagation and in vitro studies of previously non-cultivable enteral adenovirus in 293 cells. Lancet 2: 832–834

    PubMed  CAS  Google Scholar 

  • Takiff HE, Reinhold W, Garon CF, Straus SE (1984) Cloning and physical mapping of enteric adenoviruses (candidate types 40 and 41). J Virol 51: 131–136

    PubMed  CAS  Google Scholar 

  • Thea DM, Glass R, Grohmann GS, Perriens J, Ngoy B, Kapita B, Atido U, Mabaluku M, Keusch GT (1993) Prevalence of enteric viruses among hospital patients with AIDS in Kinshasa, Zaire. Trans R Soc Trop Med Hyg 87: 263–266

    PubMed  CAS  Google Scholar 

  • Tibbetts C, Larsen PL, Jones SN (1986) Autoregulation of adenovirus E1A gene expression. J Virol 57: 1055–1064

    PubMed  CAS  Google Scholar 

  • Tiemessen CT, Kidd AH (1988) Helper function of adenovirus 2 for adenovirus 41 antigen synthesis in semi-permissive and non-permissive cells. Arch Virol 103: 207–218

    PubMed  CAS  Google Scholar 

  • Tiemessen CT, Kidd AH (1990) Adenovirus 41 growth in semi-permissive cells shows multiple-hit kinetics. Arch Virol 110: 239–245

    PubMed  CAS  Google Scholar 

  • Tiemessen CT, Kidd AH (1993) Sensitivity of subgroup F adenoviruses to interferon. Arch Virol 128: 1–13

    PubMed  CAS  Google Scholar 

  • Tiemessen CT, Kidd AH (1994) Adenovirus type 40 and 41 growth in vitro: host range diversity reflected by differences in patterns of DNA replication. J Virol 68: 1239–1244

    PubMed  CAS  Google Scholar 

  • Tiemessen CT, Wegerhoff FO, Erasmus MJ, Kidd AH (1989) Infection by enteric adenoviruses, rotaviruses, and other agents in a rural African environment. J Med Virol 28: 176–182

    PubMed  CAS  Google Scholar 

  • Tiemessen CT, Ujfalusi M, Kidd AH (1993) Subgroup F adenovirus growth in fetal intestinal organ-cultures. Arch Virol 132: 193–200

    PubMed  CAS  Google Scholar 

  • Toogood CIA, Hay RT (1988) DNA sequence of the adenovirus type 41 hexon gene and predicted structure of the protein. J Gen Virol 69: 2291–2301

    PubMed  CAS  Google Scholar 

  • Toogood CIA, Murali R, Burnett RM, Hay RT (1989) The adenovirus type 40 hexon: sequence, predicted structure and relationship to other adenovirus hexons. J Gen Virol 70: 3203–3214

    PubMed  CAS  Google Scholar 

  • Toogood CIA, Crompton J, Hay RT (1992) Antipeptide sera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 73: 1429–1435

    PubMed  CAS  Google Scholar 

  • Top FH, Buescher EL, Bancroft WH, Russell PK (1971) Immunization with live types 7 and 4 adenovirus vaccines. II. Antibody response and protective effect against respiratory disease due to adenovirus type 7. J Infect Dis 124: 155–160

    PubMed  Google Scholar 

  • Uhnoo I, Wadell G, Svensson L, Johansson M (1983) Two new serotypes of enteric adenovirus causing infantile diarrhea. Dev Biol Stand 53: 311–318

    PubMed  CAS  Google Scholar 

  • Uhnoo I, Wadell G, Svensson L, Johansson ME (1984) Importance of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and young children. J Clin Microbiol 20: 365–372

    PubMed  CAS  Google Scholar 

  • Uhnoo I, Olding-Stenkvist E, Kreuger A (1986) Clinical features of acute gastroenteritis associated with rotavirus, enteric adenovirus, and bacteria. Arch Dis Child 61: 732–738

    PubMed  CAS  Google Scholar 

  • Uhnoo I, Svensson L, Wadell G (1990) Enteric adenoviruses. Baillieres Clin Gastroenterol 4: 627–642

    PubMed  CAS  Google Scholar 

  • Van R, Wun CC, O’Ryan ML, Matson DO, Jackson L, Pickering LK (1992) Outbreak of human enteric adenovirus types 40 and 41 in Houston day care centers. J Pediatr 120: 516–521

    PubMed  CAS  Google Scholar 

  • van der Avoort HGAM, Wermenbol AG, Zomerdijk TPL, Kleijne JAFW, van Asten JAAM, Jensma P, Osterhaus ADME, Kidd AH, de Jong JC (1989) Characterisation of fastidious adenovirus types 40 and 41 by DNA restriction enzyme analysis and by neutralizing monoclonal antibodies. Virus Res 12: 139–157

    PubMed  Google Scholar 

  • van Loon AE, Maas R, Vaessen RTMJ, Reemst AMCB, Sussenbach JS, Rozijn TH (1985a) Cell transformation by the left terminal regions of the adenovirus 40 and 41 genomes. Virology 147: 227–230

    PubMed  Google Scholar 

  • van Loon AE, Rozijn TH, de Jong JC, Sussenbach JS (1985b) Physicochemical properties of the DNAs of the fastidious adenovirus species 40 and 41. Virology 140: 197–200

    PubMed  Google Scholar 

  • van Loon AE, Guardi P, Perricaudet M, Rozijn TH, Sussenbach JS (1987a) Transcriptional activation by the E1A regions of adenovirus types 40 and 41. Virology 160: 305–307

    PubMed  Google Scholar 

  • van Loon AE, Ligtenberg M, Reemst AMCB, Sussenbach JS, Rozijn TH (1987b) Structure and organization of the left-terminal DNA regions of fastidious adenovirus types 40 and 41. Gene 58: 109–126

    PubMed  Google Scholar 

  • Virtanen A, Pettersson U (1985) Organization of early region 1B of human adenovirus type 2: identification of four differentially spliced mRNAs. J Virol 54: 383–391

    PubMed  CAS  Google Scholar 

  • Virtanen A, Pettersson U, Le Moullec JM, Tiollais P, Perricaudet M (1982) Different mRNAs from the transforming region of highly oncogenic and nononcogenic human adenoviruses. Nature 295: 705–707

    PubMed  CAS  Google Scholar 

  • Wadell G, Hammarskjöld ML, Winberg G, Varsanyi TM, Sundell G (1980) Genetic variability of adenoviruses. Ann NY Acad Sci 354: 15–42

    Google Scholar 

  • Wadell G, Allard A, Johansson M, Svensson L, Uhnoo I (1987) Enteric adenoviruses. Ciba Found Symp 128:63–91

    PubMed  CAS  Google Scholar 

  • Wadell G, Allard A, Johansson M, Svensson L, Uhnoo I (1994) Enteric adenoviruses. In: Kapikian AZ (ed) Viral infections of the gastrointestinal tract. Dekker, New York

    Google Scholar 

  • Weiden MD, Ginsberg HS (1994) Deletion of the E4 region of the genome produces adenovirus DNA concatemers. Proc Natl Acad Sci USA 91: 153–157

    PubMed  CAS  Google Scholar 

  • Weinberg DH, Ketner G (1986) Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression. J Virol 57: 833–838

    PubMed  CAS  Google Scholar 

  • White E, Stillman B (1987) Expression of adenovirus E1B mutant phenotypes is dependent on the host cell and on synthesis of E1A proteins. J Virol 61: 426–435

    PubMed  CAS  Google Scholar 

  • White E, Cipriani R, Sabbatini P, Denton A (1991) Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. J Virol 65: 2968–2978

    PubMed  CAS  Google Scholar 

  • Whitelaw A, Davies H, Parry J (1977) Electron microscopy of fatal adenovirus gastroenteritis. Lancet 1:361

    PubMed  CAS  Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins vβ3 and vβ5 promote adenovirus internalization but not virus attachment. Cell 73: 309–319

    PubMed  CAS  Google Scholar 

  • Willcocks MM, Carter MJ, Laidler FR, Madeley CR (1988) Restriction enzyme analysis of faecal adenoviruses in Newcastle upon Tyne. Epidemiol Infect 101: 445–458

    PubMed  CAS  Google Scholar 

  • Williams J, Karger BD, Ho YS, Castiglia CL, Mann T, Flint SJ (1986) The adenovirus E1B 495R protein plays a role in regulating the transport and stability of the viral late messages. Cancer Cells 4:275–284

    CAS  Google Scholar 

  • Witt DJ, Bousquet EB (1988) Comparison of enteric adenovirus infection in various human cell lines. J Virol Methods 20: 295–308

    PubMed  CAS  Google Scholar 

  • Wold WSM, Gooding LR (1991) Region E3 of adenovirus: a casette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8

    PubMed  CAS  Google Scholar 

  • Wu L, Rosser DSE, Schmidt MC, Berk A (1987) A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature 326: 512–515

    PubMed  CAS  Google Scholar 

  • Yeh HY, Luftig RB (1991) Human enteric adenovirus type 41 binding to Hep-2 cells is specific. Virology 183:410–414

    PubMed  CAS  Google Scholar 

  • Yew PR, Berk AJ (1992) Inhibition of p53 transactivation by adenovirus early 1B protein. Nature 357: 82–85

    PubMed  CAS  Google Scholar 

  • Yew PR, Kao CC, Berk AJ (1990) Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 179: 795–805

    PubMed  CAS  Google Scholar 

  • Yew PR, Liu X, Berk AJ (1994) Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8: 190–202

    PubMed  CAS  Google Scholar 

  • Yolken RH, Franklin CC (1985) Gastrointestinal adenovirus: an important cause of morbidity in patients with necrotizing enterocolitis and gastrointestinal surgery. Paediatr Infect Dis 4: 42–47

    CAS  Google Scholar 

  • Yolken RH, Lawrence F, Leister F, Takiff HE, Straus SE (1982) Gastroenteritis associated with enteric type adenovirus in hospitalized infants. J Pediatr 101: 21–26

    PubMed  CAS  Google Scholar 

  • Zhang S, Mak S, Branton PE (1992) Adenovirus type 12 early region 1B proteins and metabolism of early viral mRNAs. Virology 191: 793–802

    PubMed  CAS  Google Scholar 

  • Zhang Y, Schneider RJ (1994) Adenovirus inhibition of cell translation facilitates release of virus particles and enhances degradation of the cytokeratin network. J Virol 68: 2544–2555

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mautner, V., Steinthorsdottir, V., Bailey, A. (1995). Enteric Adenoviruses. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses III. Current Topics in Microbiology and Immunology, vol 199/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79586-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79586-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79588-6

  • Online ISBN: 978-3-642-79586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics