Skip to main content

Model Systems for Studying the Effects of Adenovirus E3 Genes on Virulence In Vivo

  • Chapter
Book cover The Molecular Repertoire of Adenoviruses III

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/3))

Abstract

Adenoviruses (Ad) are important pathogens in a variety of species. In humans, Ad are most commonly recognized in the respiratory tract and conjunctiva. However, several members of this large family of viruses can cause disease in the gastrointestinal tract, while others infect the urinary tract, liver, and central nervous system (Horwitz 1990b). In dogs, a canine Ad is a major cause of hepatitis, and the murine adenovirus type 1 (MAV-1) can cause multiorgan disease in the mouse (Ishibashi and Yasue 1984). However, the Ad that infect each species are sufficiently different that they do not cross into distantly related species. For example, human Ad replicate poorly in mice or murine tissue culture. There are 49 distinct serotypes that can infect humans, but the majority of Ad disease is caused by approximately one third of this number (Schnurr and Dondero 1993; Hierholzer et al. 1988). Ad are classified into six groups (A-F) based on GC content and genetic relatedness of their DNA, oncogenicity in rodents, and ability to agglutinate red blood cells of different species (Horwitz 1990a). The organ targeted for disease is often related to serotype, such that Ad7 causes pneumonia, Ad2 upper respiratory tract disease, Ad40 and Ad41 cause diarrhea, Ad11 is associated with hemorrhagic cystitis, and Ad34 and Ad35 are often found in the urinary tract of immunosuppressed patients (Horwitz 1990b). However, the reason for tissue-specific damage in relationship to serotype is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aderka D, Novick D, Hahn T, Fischer DG, Wallach D (1985) Increase of vulnerability to lymphotoxin in cells infected by vesicular stomatitis virus and its further augmentation by interferon. Cell Immunol 92:218–225

    Article  PubMed  CAS  Google Scholar 

  • Arroyo M, Bagchi S, Raychaudhuri P (1993) Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex. Mol Cell Biol 13: 6537–6546

    PubMed  CAS  Google Scholar 

  • Ball AO, Williams ME, Spindler KR (1988) Identification of mouse adenovirus type 1 early region 1: DNA sequence and a conserved transacting function. J Virol 62: 3947–3957

    PubMed  CAS  Google Scholar 

  • Binder D, Kündig TM (1991) Antiviral protection by CD8+ versus CD4+ T cells. J Immunol 146:4301–4307

    PubMed  CAS  Google Scholar 

  • Blanden RV (1970) Mechanisms of recovery from a generalized viral infection: mousepox. J Exp Med 132:1035–1054

    Article  PubMed  CAS  Google Scholar 

  • Blanden RV (1971) Mechanisms of recovery from a generalized viral infection: mousepox. J Exp Med 133:1074–1089

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Mermod N, Horwitz MS (1990) Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complexes. J Biol Chem 265: 18634–18642

    PubMed  CAS  Google Scholar 

  • Cotten M, Wagner E, Zatloukal K, Birnstiel ML (1993) Chicken adenovirus (CELO virus) particles augment receptor-mediated DNA delivery to mammalian cells and yield exceptional levels of stable transformants. J Virol 67: 3777–3785

    PubMed  CAS  Google Scholar 

  • Cox JH, Yewdell JW, Eisenlohr LC, Johnson PR, Bennink JR (1990) Antigen presentation requires transport of MHC class I molecules from the endoplasmic reticulum. Science 247: 715–718

    Article  PubMed  CAS  Google Scholar 

  • Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1 A, which is inhibited by E1B. Genes Dev 7: 546–554

    Article  PubMed  CAS  Google Scholar 

  • Faha B, Harlow E, Lees E (1993) The adenovirus E1A-associated kinase consists of cyclin E-p33cdk2 and cyclin A-p33cdk2. J Virol 67: 2456–2465

    PubMed  CAS  Google Scholar 

  • Fejer G, Gyory I, Tufariello J, Horwitz MS (1994) Characterization of transgenic mice containing adenovirus early region 3 genomic DNA J Virol 68: 5871–5881

    CAS  Google Scholar 

  • Flomenberg PR, Chen M, Horwitz MS (1987) Characterization of a major histocompatibility complex class I antigen-binding glycoprotein from adenovirus type 35, a type associated with immunocompromised hosts. J Virol 61: 3665–3671

    PubMed  CAS  Google Scholar 

  • Ginsberg HS, Dingle JH (1965) The adenovirus group. Horsfall FL Jr, Tamm I (Eds) Viral and rickettsial infections of man. Lippincott, Philadelphia, pp 860–891

    Google Scholar 

  • Ginsberg HS, Lundholm-Beauchamp U, Horswood RL, Pernis B, Wold WSM, Chanock RM, Prince GA (1989) Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proc Natl Acad Sci USA 86: 3823–3827

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg HS, Horswood RL, Chanock RM, Prince GA (1990) Role of early genes in pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci U S A 87: 6191–6195

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg HS, Moldawer LL, Sehgal PB, Redington M, Kilian PL, Chanock RM, Prince GA (1991) A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci USA 88: 1651–1655

    Article  PubMed  CAS  Google Scholar 

  • Gooding LR, Elmore LW, Tollefson AE, Brady HA, Wold WSM (1988) A 14 700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53: 341–346

    Article  PubMed  CAS  Google Scholar 

  • Gooding LR, Ranheim TS, Tollefson AE, Aquino L, Duerksen-Hughes PJ, Horton TM, Wold WSM (1991) The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J Virol 65(8): 4114–4123

    PubMed  CAS  Google Scholar 

  • Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75: 477–486

    Article  PubMed  CAS  Google Scholar 

  • Grunhaus A, Horwitz MS (1992) Adenoviruses as cloning vectors. Rice C (ed) Seminars in virology Saunders Scientific, London, pp 237–252

    Google Scholar 

  • Grunhaus A, Cho S, Horwitz MS (1994) Association of vaccinia virus-expressed adenovirus E3-19K glycoprotein with class I MHC and its effects on virulence in a murine pneumonia model. Virology 200:535–546

    Article  PubMed  CAS  Google Scholar 

  • Hay-Ahmad Y, Graham FL (1986) Development of a helper-independent human adenovirus vector and its use in the transfer of the herpes simplex virus thymidine kinase gene. J Virol 57: 267–274

    Google Scholar 

  • Hierholzer JC, Wigand R, Anderson LJ, Adrian T, Gold JWM (1988) Adenovirus from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D (types 43–47) J Infect Dis 158: 804–813

    Article  PubMed  CAS  Google Scholar 

  • Hirsch MS, Nahmias AJ, Murphy FA, Kramer JH (1968) Cellular immunity in vaccinia infection of mice. J Exp Med 128: 121–132

    Article  PubMed  CAS  Google Scholar 

  • Horton TM, Ranheim TS, Aquino L, Kusher DI, Saha SK, Ware CF, Wold WSM, Gooding LR (1991) Adenovirus E3 14.7K protein functions in the absence of other adenovirus proteins to protect transfected cells from tumor necrosis factor cytolysis. J Virol 65(5): 2629–2639

    PubMed  CAS  Google Scholar 

  • Horwitz MS (1990a) Adenoviridae and their replication. Fields BN, Knipe DM, Chanock RM, Melnick JL, Hirsch MS, Monath TP, Roizman B (eds) Virology, 2nd edn. Raven, New York, pp 1679–1721

    Google Scholar 

  • Horwitz MS (1990b) Adenoviruses. Fields BN, Knipe DM, Chanock RM, Melnick JL, Hirsch MS, Monath TP, Roizman B (eds) Virology, 2nd edn. Raven, New York, pp 1723–1740

    Google Scholar 

  • Horvath J, Palkonyay L, Weber J (1986) Group C adenovirus DNA sequences in human lymphoid cell. J Virol 59: 189–192

    PubMed  CAS  Google Scholar 

  • Ikeda MA, Nevins JR (1993) Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol Cell Biol 13: 7029–7035

    PubMed  CAS  Google Scholar 

  • Ishibashi M, Yasue H (1984) Adenoviruses of animals. Ginsberg HS (ed) The adenoviruses. Plenum, New York, pp 497–562

    Google Scholar 

  • Klessig DF, Quinlan MP (1982) Genetic evidence for separate functional domains of the human adenovirus specified, 72K, DNA-binding protein. J Mol Appl Genet 1: 263–272

    PubMed  CAS  Google Scholar 

  • Koff WC, Fann AV (1986) Human tumor necrosis factor-α kills herpesvirus-infected but not normal cells. Lymphokine Res 5: 215–221

    PubMed  CAS  Google Scholar 

  • Korner H, Fritzsche U, Burgert HG (1992) Tumor necrosis factor a stimulates expression of adenovirus early region 3 proteins: implications for viral persistence. Proc Natl Acad Sci U S A 89:11857–11861

    Article  PubMed  CAS  Google Scholar 

  • Krajcsi P, Tollefson AE, Wold WSM (1992) The E3-14.5K integral membrane protein of adenovirus that is required for down-regulation of the EGF receptor and for prevention of TNF cytolysis is O-glycosylated but not N-glycosylated. Virology 188: 570–579

    Article  PubMed  CAS  Google Scholar 

  • Kraus VB, Moran E, Nevins JR (1992) Promoter-specific trans-activation by the adenovirus E1A 12S product involves separate E1A domains. Mol Cell Biol 12: 4391–4399

    PubMed  CAS  Google Scholar 

  • Lavery DJ, Fu SM, Lufkin T, Chen-Kiang S (1987) Productive infection by cultured human lymphoid cells by adenovirus. J Virol 61: 1466–1472

    PubMed  CAS  Google Scholar 

  • Lonberg-Holm K, Crowell RL, Philipson L (1976) Unrelated animal viruses share receptors. Nature 259: 678–681

    Article  Google Scholar 

  • Lorence RM, Rood PA, Kelly KW (1988) Newcastle disease virus as an antineoplastic agent: induction of tumor necrosis factor-α and augmentation of its cytotoxicity. J Natl Cancer Inst 80: 1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Mathews MB (1993) Comparative analysis of the structure and function of adenovirus virus-associated RNAs. J Virol 67: 6605–6616

    PubMed  CAS  Google Scholar 

  • Michael SI, Huang CH, Romer MU, Wagner E, Hu PC, Curiel DT (1993) Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway. J Biol Chem 268: 6866–6869

    PubMed  CAS  Google Scholar 

  • Mittal SK, McDermott MR, Johnson DC, Prevec L, Graham FL (1993) Monitoring foreign gene expression by a human adenovirus-based vector using the firefly luciferase gene as a reporter. Virus Res 28: 67–90

    Article  PubMed  CAS  Google Scholar 

  • Otten JA, Tennant RW (1982) The mouse in biomedical research, 2nd edn. Academic, New York pp 335–340

    Google Scholar 

  • Prince GA, Porter DD, Bennett Jenson A, Horswood RL, Chanock RM, Ginsberg HS (1993a) Pathogenesis of adenovirus type 5 pneumonia in cotton rats. J Virol 67: 101–111

    PubMed  CAS  Google Scholar 

  • Prince GA, Porter DD, Jenson AB, Horswood RL, Chanock RM, Ginsberg HS (1993b). Pathogenesis of adenovirus type 5 pneumonia in cotton rats (Sigmodon hispidus). J Virol 67: 101–111

    PubMed  CAS  Google Scholar 

  • Ragot T, Vincent N, Chafey P, Vigne E, Gilgenkrantz H, Couton D, Cartaud J, Briand P, Kaplan J-C, Perricaudet M, Kahn A (1993) Efficient adenovirus-mediated transfer of a human minidystroph in gene to skeletal muscle of mdx mice. Nature 361: 647–650

    Article  PubMed  CAS  Google Scholar 

  • Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E (1992) The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 89: 7742–7746

    Article  PubMed  CAS  Google Scholar 

  • Raviprakash KS, Grunhaus A, Elkholy A, Horwitz MS (1989) The mouse adenovirus type 1 contains an unusual E3 region. J Virol 63: 5455–5458

    PubMed  CAS  Google Scholar 

  • Rowe WP, Huebiner RJ, Gillmore LK, Parrott RH, Ward TG, (1953) Isolation of a cytogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84: 570–573

    PubMed  CAS  Google Scholar 

  • Sambhi SK, Kohonen-Corish MRJ, Ramshaw IA (1991) Local production of tumor necrosis factor encoded by recombinant vaccinia virus is effective in controlling viral replication in vivo. Proc Natl Acad Sci USA 88: 4025–4029

    Article  PubMed  CAS  Google Scholar 

  • Schnurr D, Dondero ME (1993) Two new candidate adenovirus serotypes. Intervirology 36: 79–83

    PubMed  CAS  Google Scholar 

  • Smith AL, Barthold SW (1987) Factors influencing susceptibility of laboratory rodents to infection with mouse adenovirus strains K 87 and FL. Arch Virol 95: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Spriggs MK, Koller BH, Sato T, Morrisey PJ, Fanslow WC, Smithies O, Voice RF, Widmer MB, Maliszewski CR (1992) β2-Microglobulin, CD8+T-cell-deficient mice survive inoculation with high doses of vaccinia virus and exhibit altered IgG responses. Proc Natl Acad Sci USA 89: 6070–6074

    Google Scholar 

  • Tufariello J, Cho S, Horwitz MS (1994a) The adenovirus E3 14.7-kilodalton protein which inhibits cytolysis by tumor necrosis factor increases the virulence of vaccinia virus in a murine pneumonia model. J Virol 68: 453–462

    PubMed  CAS  Google Scholar 

  • Tufariello J, Cho S, Horwitz MS (1994b) Adenovirus E3 14.7K protein, an antagonist of tumor necrosis factor cytolysis, increases the virulence of vaccinia virus in severe combined immunodeficient mice. Proc Natl Acad Sci USA 91: 10987–10991

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Zatloukal K, Cotten M, Kirlappos H, Mechtler K, Curiel DT, Bimstiel ML (1992) Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA 89: 6099–6103

    Article  PubMed  CAS  Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins αvβ3S and αvβ5 promote adeno virus internalization but not virus attachment. Cell 73: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Wold WSM, Gooding LR (1991) Region E3 of adenovirus: a cassette of genes involved in host immunosurveillance and virus-cell interactions. Virology 184: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Wold WSM (1995) E3 transcription unit of adenovirus. In: Doerfler W, Böhm P (eds) The molecular repertoire of adenoviruses. Springer, Berlin, Heidelberg New York (current topic’s in microbiology and immunology, vol 199/I): 237–274

    Chapter  Google Scholar 

  • Wong GHW, Goeddel DV (1986) Tumor necrosis factors a and ß inhibit virus replication and synergize with interferons. Nature 323: 819–822

    Article  PubMed  CAS  Google Scholar 

  • Zabner J, Couture LA, Gregory RJ, Graham SM, Smith AE, Welsh MJ (1993) Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75: 207–216

    Article  PubMed  CAS  Google Scholar 

  • Zilli D, Voelkel-Johnson C, Skinner T, Laster SM (1992) The adenovirus E3 region 14.7 kDa protein, heat and sodium arsinate inhibit the TNF-induced release of arachidonic acid. Biochem Biophys Res Commun 188(1): 177–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horwitz, M.S., Tufariello, J., Grunhaus, A., Fejer, G. (1995). Model Systems for Studying the Effects of Adenovirus E3 Genes on Virulence In Vivo. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses III. Current Topics in Microbiology and Immunology, vol 199/3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79586-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79586-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79588-6

  • Online ISBN: 978-3-642-79586-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics