Skip to main content

Feedback Control of Intravenous Anesthetics by Quantitative EEG

  • Conference paper
Control and Automation in Anaesthesia

Abstract

The use of a feedback system to control intravenous anesthetic drug delivery based on the spontaneous EEG requires at first mapping the anesthesia-induced EEG changes onto a figure which can be easily calculated and used for control. The power spectrum of the EEG signal has been widely investigated as a basis for the derivation of EEG parameters. The power spectrum is nothing but a distribution; thus, the derivation of spectral EEG parameters is equivalent to the derivation of descriptors of a distribution. It should, however, be mentioned here that the estimation of the power spectrum is not a unique procedure. The transformation from the time domain into the frequency domain requires a signal extending from −∞ to +∞ in time. Because an EEG epoch is finite in time, methods for extrapolating the signal to the future and into the past are required. Fourier transformation assumes that the epoch under consideration is repeated indefinitely to ±00, while other methods of power spectrum estimation, such as maximum entropy analysis [28], assume other methods of extrapolation. For the purpose of EEG monitoring during anesthesia, these differences in estimating the power spectrum are of minor importance if the EEG epoch is long enough. Figure 1 gives the scheme of an EEG power spectrum and the three monoparametric descriptors of distribution which were used. The simplest one is mean EEG frequency, defined as the mean of the power spectrum regarded as a distribution. As is known from ordinary statistics, the mean can give inappropriate measures of the center in the case of skew symmetric distributions and is, in addition, rather sensitive to outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausems EM, Hug CC, de Lange S (1983) Variable rate infusion of alfentanil to nitrous oxide anesthesia for general surgery. Anesth Analg 62: 982–986

    CAS  Google Scholar 

  2. Ausems EM, Hug CC, Stanski DR, Burm AGL (1986) Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology 65: 362–373

    Article  PubMed  CAS  Google Scholar 

  3. Gesink-van der Veer BJ, Burm AGL, Hennis PJ, Bovill JG (1989) Alfentanil requirement in Crohn’s disease. Anaesthesia 44: 209–211

    Article  Google Scholar 

  4. Lemmens HJM, Burm AGL, Bovill JG, Hennis PJ (1988) Pharmacodynamics of alfentanil as a supplement to nitrous oxide anaesthesia in the elderly. Br J Anaesth 61: 173–179

    Article  PubMed  CAS  Google Scholar 

  5. Levy WJ, Shapiro HM, Maruchak G (1980) Automated EEG processing for intraoperative monitoring — a comparison of techniques. Anesthesiology 53: 223–236

    Article  PubMed  CAS  Google Scholar 

  6. Merkel G, Eger El 11 (1963) A comparative study of halo thane and halopropane anesthesia including a method for determining equipotency. Anesthesiology 24: 346–352

    Article  PubMed  CAS  Google Scholar 

  7. Prys-Roberts C, Davis JR, Calverley RK, Goodman NW (1983) Haemodynamic effects on infusions of diisopropyl phenol (ICI35868) during nitrous oxide anaesthesia in man. Br J Anaesth 55: 105–111

    Article  PubMed  CAS  Google Scholar 

  8. Quasha AL, Eger EI 11, Tinker JH (1980) Determination and applications of MAC. Anesthesiology 53: 315–334

    Article  PubMed  CAS  Google Scholar 

  9. Rampil IJ, Sasse FJ, Smith NT (1980) Spectral edge frequency — a new correlate of anesthetic depth. Anesthesiology 53: S12

    Article  Google Scholar 

  10. Schüttler J, Stoeckel H (1982) Alfentanil (R 39209). Ein neues kurzwirkendes Opioid. Pharmakokinetik and erste klinische Erfahrungen. Anaesthesist 31: 10–14

    Google Scholar 

  11. Schüttler J, Schwilden H, Stoeckel H (1983) Pharmacokinetics as applied to total intravenous anaesthesia. Practical implications. Anaesthesia [Suppl] 38: 53–56

    Google Scholar 

  12. Schüttler J, Schwilden H, Stoeckel H (1985) Infusion strategies to investigate the pharmacokinetics and pharmacodynamics of hypnotic drugs: etomidate as an example. Eur J Anaesthesiol 2: 133–142

    PubMed  Google Scholar 

  13. Schüttler J, Schwilden H, Stoeckel H (1985) Pharmacokinetic and pharmacodynamic modelling of propofol (“diprivan”) in volunteers and surgical patients. Postgrad Med J 61 [Suppl 3]: 53–54

    PubMed  Google Scholar 

  14. Schüttler J, Stoeckel H, Schwilden H, Lauven PM (1986) Pharmakokinetisch begründete Infusionsmodelle für die Narkoseführung mit Alfentanil. In: Doenicke A (ed) Alfentanil. Springer, Berlin Heidelberg New York, pp 42–51

    Google Scholar 

  15. Schwilden H, Stoeckel H (1980) Untersuchunger über verschiedene EEG-Parameter als Indikatoren des Narkosezustandes, Der Median als quantitative Maß der Narkosetiefe. Anaesth Intensivther Notfallmed 15: 279–286

    Google Scholar 

  16. Schwilden H, Schüttler J, Stoeckel H (1983) Pharmacokinetics as applied to total intravenous anaesthesia. Theoretical considerations. Anaesthesia [Suppl] 38: 51–52

    Google Scholar 

  17. Schwilden H, Schüttler J, Stoeckel H (1985) Quantitation of the EEG and pharmacodynamic modelling of hypnotic drugs: etomidate as an example. Eur J Anaesthesiol 2: 121–131

    PubMed  CAS  Google Scholar 

  18. Schwilden H. Stoechel H (1987) Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. Br J Anaesth 59: 738–745

    CAS  Google Scholar 

  19. Schwilden H, Schüttler J, Stoeckel H (1987) Closed-loop feedback control of methohexitone anesthesia by quantitative EEG-analysis in humans. Anesthesiology 67: 53–59

    Article  Google Scholar 

  20. Schwilden H, Stoeckel H, Schüttler J (1989) Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. Br J Anaesth 62: 290–296

    Article  PubMed  CAS  Google Scholar 

  21. Schwilden H (1989) Use of the median EEG frequency and pharmacokinetics in determining depth of anaesthesia. In: Jones JG (ed) Bailliere’s clinical anaesthesiology. Baillieres, London, pp 603–622

    Google Scholar 

  22. Schwilden H, Stoeckel H (1990) Effective therapeutic infusions produced by closed-loop feedback control of methohexital administration during total intravenous anesthesia with fentanyl. Anesthesiology 74: 225–229

    Article  Google Scholar 

  23. Schwilden H, Schüttler J (1990) Bestimmung effektive therapeutischer Infusionsraten ( ETI) für intravenöse Anaesthetika durch feedback-geregelte Dosierung. Anaesthesist 39: 603–606

    Google Scholar 

  24. Schwilden H, Stoeckel H (1993) Closed-loop feedback controlled administration of alfentanil during alfentanil-nitrous oxide anaesthesia. Br J Anaesth 70: 389–393

    Article  PubMed  CAS  Google Scholar 

  25. Stoeckel H, Schwilden H, Lauven PM, Schüttler J (1981) EEG parameters for evaluation of depth of anaesthesia. The median of frequency distribution. In: Vickers MD, Crul J (eds) Proceedings of the European Academy of Anaesthesiology 1980. Springer, Berlin Heidelberg New York, pp 73–78

    Google Scholar 

  26. Stoeckel H, Schwilden H (1984) Quantitative EEG-analysis and monitoring depth of anaesthesia. In: Gomez QJ, Egay LM, de la Cruz-Odi MF (eds) Anesthesia safety for all. Elsevier, Amsterdam, p 151

    Google Scholar 

  27. Stoeckel H, Schüttler J, Schwilden H (1985) Grundlagen der Infusionsnarkose mit Alfentanil. In: Zindler M, Härtung E (eds) Alfentanil. Ein neues, ultrakurzwirkendes Opioid. Urban and Schwarzenberg, Munich, pp 141–150

    Google Scholar 

  28. Ulrych TJ, Bishop TN (1975) Maximum entropy spectral analysis and autoregressive decomposition. Rev Geophys Space Phys 13: 183

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schüttler, J., Schwilden, H. (1995). Feedback Control of Intravenous Anesthetics by Quantitative EEG. In: Schwilden, H., Stoeckel, H. (eds) Control and Automation in Anaesthesia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79573-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79573-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79575-6

  • Online ISBN: 978-3-642-79573-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics