Skip to main content

The Target of Control: Plasma Concentrations or Drug Effect

  • Conference paper
Control and Automation in Anaesthesia
  • 73 Accesses

Abstract

The objective of any drug-administration scheme is to obtain a desired effect. The therapeutic process consists of administering a drug to the patient to provide the desired effect. As a result of the disposition of the drug within the patient, the administered dose will result in a plasma concentration of the drug. This concentration will then determine the effect of the drug (Fig. 1). This drug effect is observed or monitored by the physician, and the drug dosage is then adjusted to achieve the desired therapeutic goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwilden H, Stoeckel H, Schuttler J (1989) Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. Br J Anaesth 62: 290–296

    Article  PubMed  CAS  Google Scholar 

  2. Scott JC, Ponganis KV, Stanski DR (1985) Quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 62: 234–241

    Article  PubMed  CAS  Google Scholar 

  3. Vernon J, Bowles S, Sebel PS, Chamoun MS (1992) EEG bispectrum predicts movement on skin incision during isoflurane or propofol anesthesia. Anesthesiology 77: A502

    Article  Google Scholar 

  4. Kenny GNC, Davies FW, Mantzardis H, Fisher AC (1992) Closed-loop control of anesthesia. Anesthesiology 77: A328

    Article  Google Scholar 

  5. Stanski DR (1994) Monitoring depth of anesthesia. Intravenous drug delivery systems. In: Miller RD (ed) Anesthesia, 4th edn. Churchill Livingstone, New York, pp 1127–1160

    Google Scholar 

  6. Rampil IJ, Mason P, Singh H (1993) Anesthetic potency ( MAC) is independent of forebrain structures in the rat. Anesthesiology 78: 707–712

    Google Scholar 

  7. Schwilden H, Stoeckel H (1990) Effective therapeutic infusions produced by closed-loop feedback control of methohexital administration during total intravenous anesthesia with fentanyl. Anesthesiology 73: 225–229

    Article  PubMed  CAS  Google Scholar 

  8. Glass PSA, Shafer SL, Jacobs JR, Reves JG (1994) Intravenous drug delivery systems. In: Miller RD (ed) Anesthesia, 4th edn. Churchill Livingstone, New York, pp 389–416

    Google Scholar 

  9. Wagner JG (1974) A safe method for rapidly achieving plasma concentration plateaus. Clin Pharmacol Ther 16: 691–700

    PubMed  CAS  Google Scholar 

  10. Sheiner LB, Stanski DR, Vozeh S et al (1979) Simultaneous modelling of pharmacokinetics and pharmacodynamics; application to d-tubocurarine. Clin Pharmacol Ther 25: 358–371

    PubMed  CAS  Google Scholar 

  11. Shafer SL, Gregg K (1992) Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm 20: 147–169

    Article  PubMed  CAS  Google Scholar 

  12. Jacobs JR, Williams EA (1993) Algorithm to control “effect compartment” drug concentrations in pharmacokinetic model-driven drug delivery. IEEE Trans Biomed Eng 40: 993–999

    Article  PubMed  CAS  Google Scholar 

  13. Shafer SL, Varvel JR (1991) Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 74: 53–63

    Article  PubMed  CAS  Google Scholar 

  14. Peacock JE, Lewis RP, Reilly CS, Nimmo WS (1990) Effects of different rates of infusion for induction of anaesthesia in elderly patients. Br J Anaesth 65: 346–352

    Article  PubMed  CAS  Google Scholar 

  15. Avram MJ, Sanghvi R, Henthorn TK, Krejcie TC, Shanks CA, Fragen RJ, Howard KA (1993) Determinants of thiopentone induction dose requirements. Anesth Analg 76: 10–17

    Article  PubMed  CAS  Google Scholar 

  16. Jacobs JR, Reves JG (1993) Effect site equilibration time is a determinant of induction dose requirement. Anesth Analg 76: 1–6

    Article  PubMed  CAS  Google Scholar 

  17. Gentry WB, Krejcie TC, Henthorn TK, Shanks CA, Howard KA, Gupta DK, Avram MJ (1994) Effect of infusion rate on thiopental dose-response relationships: assessment of a pharmacokinetic-pharmacodynamic model. Anesthesiology 81: 361–324

    Article  Google Scholar 

  18. Smith C, McEwan AI, Jhaveri R (1994) Reduction of propofol Cp50 by fentanyl. Anesthesiology (in press)

    Google Scholar 

  19. Dyck JB, Varvel J, Hung O, Shafer SL (1991) The pharmacokinetics of propofol versus age. Can J Anaesth 38: A129

    Article  Google Scholar 

  20. McEwan AI, Smith C, Dyar O, Goodman D, Glass PSA (1993) Isoflurane MAC reduction by fentanyl. Anesthesiology 78: 864 - 869

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Glass, P.S.A. (1995). The Target of Control: Plasma Concentrations or Drug Effect. In: Schwilden, H., Stoeckel, H. (eds) Control and Automation in Anaesthesia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79573-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79573-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79575-6

  • Online ISBN: 978-3-642-79573-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics