Skip to main content

Model-Based Adaptive Control of Volatile Anesthetics by Quantitative EEG

  • Conference paper
Control and Automation in Anaesthesia

Abstract

Automatic feedback control of the delivery of volatile anesthetic agents has been realized in the past using inspired concentrations as well as expired concentrations (see D.R. Westenskow, this volume, pp 155–157) as feedback signal. These approaches used a proportional-integral-derivative (PID) controller for feedback control of the volatile anesthetic agents. This paper deals with a model-based adaptive feedback control system of the delivery of volatile anesthetics using the EEG as the pharmacodynamic response variable to be controlled. Specifically, we used the median EEG frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zuntz N (1897) Zur Pathogenese und Therapie der durch rasche Luftdruckänderungen erzeugten Krankheiten. Fortschr Med 15: 632

    Google Scholar 

  2. Schwilden H, Stoeckel H, Schüttler J, Lauven PM (1982) Pharmacokinetic data of fentanyl, midazolam and enflurane as obtained by a new method for arbitrary schemes of administration. In: Prys-Roberts C, Vickers MD (eds) Cardiovascular measurement in anaesthesiology. Springer, Berlin Heidelberg New York, pp 22–29

    Chapter  Google Scholar 

  3. Stoeckel H, Schwilden H (1986) Methoden der automatischen Feedback-Regelung für die Narkose. Konzepte und klinische Anwendung. Anaesth Intensivther Notfallmed 21: 60–67

    Google Scholar 

  4. Saidman LJ, Eger EI (1964) Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25: 302–306

    Article  PubMed  CAS  Google Scholar 

  5. Torri G, Damia G, Fabiani ML (1974) Effect of nitrous oxide on the anesthetic requirement of enflurane. Br J Anaesth 46: 468–472

    Article  PubMed  CAS  Google Scholar 

  6. Stevens WC, Dolan WM, Gibbons RT, White A, Eger EI, Miller RD, De Jong RH, Elashoff RM (1975) Minimum alveolar concentrations ( MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 42: 197–200

    Google Scholar 

  7. DiFazio CA, Brown RE, Ball CG, Heckel CG, Kennedy SS (1972) Additive effects of anesthetics and theories of anesthesia. Anesthesiology 36: 57–63

    Article  Google Scholar 

  8. Cole DJ, Kalichman MW, Shapiro HM (1989) The nonlinear contribution of nitrous oxide at sub-MAC concentrations to enflurane MAC in rats. Anesth Analg 68: 556–562

    Article  PubMed  CAS  Google Scholar 

  9. Cole DJ, Kalichman MW, Shapiro HM, Drummond JC (1990) The nonlinear potency of sub-MAC concentrations of nitrous oxide in decreasing the anesthetic requirement of enflurane, halothane, and isoflurane in rats. Anesthesiology 73: 93–99

    Article  PubMed  CAS  Google Scholar 

  10. Chortkoff BS, Bennet HL, Eger EI (1993) Does nitrous oxide antagonize isoflurane-induced suppression of learning? Anesthesiology 79: 724–732

    Article  PubMed  CAS  Google Scholar 

  11. Yli-Hankala A, Lindgren L, Porkkala T, Jantti V (1993) Nitrous oxide-mediated activation of the EEG during isoflurane anaesthesia in patients. Br J Anaesth 70: 54–57

    Article  PubMed  CAS  Google Scholar 

  12. Deady JE, Koblin DD, Eger EI, Heavner JE, D’Aoust B (1981) Anesthetic potencies and the unitary theory of narcosis. Anesth Analg 60: 380–384

    Article  PubMed  CAS  Google Scholar 

  13. Eger EI (1989) Does 1 + 1 = 2? (Editorial) Anesth Analg 68: 551–552

    PubMed  CAS  Google Scholar 

  14. Murray DJ, Metha WP, Forbes RB (1991) The additive contribution of nitrous oxide to isoflurane MAC in infants and children. Anesthesiology 75: 186–190

    Article  PubMed  CAS  Google Scholar 

  15. Hornbein TF, Eger EI, Winter PM, Smith G, Wetstone D, Smith KH (1982) The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 61: 553–556

    Article  PubMed  CAS  Google Scholar 

  16. Eger EI, Lampe GH, Wauk LZ, Whitendale P, Cahalan MK (1990) Clinical pharmacology of nitrous oxide: an argument for its continued use. Anesth Analg 71: 575–585

    Article  PubMed  Google Scholar 

  17. Dwyer R, Bennett HL, Eger EI, Heilbron D (1992) Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 77: 888–898

    Article  PubMed  CAS  Google Scholar 

  18. Shim CY, Andersen NB (1992) Minimal alveolar concentration ( MAC) and dose-response curves in anesthesia. Anesthesiology 36: 146–151

    Google Scholar 

  19. Kissin I (1993) General anesthetic action: an obsolete notion? Anesth Analg 76: 215–218

    Article  PubMed  CAS  Google Scholar 

  20. Rampil I J, Mason P, Singh H (1993) Anesthetic potency ( MAC) is independent of forebrain structures in the rat. Anesthesiology 78: 707–712

    Google Scholar 

  21. Rampil IJ (1993) Is MAC testing a spinal reflex? Anesthesiology 79-. A422 (abstract)

    Google Scholar 

  22. Antigonini JF, Schwartz K (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79: 1244–1249

    Article  Google Scholar 

  23. Schwilden H, Stoeckel H (1987) Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. Br J Anaesth 59: 738–745

    Article  PubMed  CAS  Google Scholar 

  24. Rampil IJ, Laster MJ (1992) No correlation between quantitative electroencephalographic measurement and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology 77: 920–925

    Article  PubMed  CAS  Google Scholar 

  25. Komatsu T, Shingu K, Tomemori M, Urabe N, Mori K (1981) Nitrous oxide activates the supraspinal pain inhibition system. Acta Anaesth Scand 25: 519–522

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwilden, H., Schüttler, J. (1995). Model-Based Adaptive Control of Volatile Anesthetics by Quantitative EEG. In: Schwilden, H., Stoeckel, H. (eds) Control and Automation in Anaesthesia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79573-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79573-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79575-6

  • Online ISBN: 978-3-642-79573-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics