Model-Based Adaptive Control of Volatile Anesthetics by Quantitative EEG

  • H. Schwilden
  • J. Schüttler
Conference paper

Abstract

Automatic feedback control of the delivery of volatile anesthetic agents has been realized in the past using inspired concentrations as well as expired concentrations (see D.R. Westenskow, this volume, pp 155–157) as feedback signal. These approaches used a proportional-integral-derivative (PID) controller for feedback control of the volatile anesthetic agents. This paper deals with a model-based adaptive feedback control system of the delivery of volatile anesthetics using the EEG as the pharmacodynamic response variable to be controlled. Specifically, we used the median EEG frequency.

Keywords

Depression Convolution Fentanyl Midazolam Isoflurane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zuntz N (1897) Zur Pathogenese und Therapie der durch rasche Luftdruckänderungen erzeugten Krankheiten. Fortschr Med 15: 632Google Scholar
  2. 2.
    Schwilden H, Stoeckel H, Schüttler J, Lauven PM (1982) Pharmacokinetic data of fentanyl, midazolam and enflurane as obtained by a new method for arbitrary schemes of administration. In: Prys-Roberts C, Vickers MD (eds) Cardiovascular measurement in anaesthesiology. Springer, Berlin Heidelberg New York, pp 22–29CrossRefGoogle Scholar
  3. 3.
    Stoeckel H, Schwilden H (1986) Methoden der automatischen Feedback-Regelung für die Narkose. Konzepte und klinische Anwendung. Anaesth Intensivther Notfallmed 21: 60–67Google Scholar
  4. 4.
    Saidman LJ, Eger EI (1964) Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25: 302–306PubMedCrossRefGoogle Scholar
  5. 5.
    Torri G, Damia G, Fabiani ML (1974) Effect of nitrous oxide on the anesthetic requirement of enflurane. Br J Anaesth 46: 468–472PubMedCrossRefGoogle Scholar
  6. 6.
    Stevens WC, Dolan WM, Gibbons RT, White A, Eger EI, Miller RD, De Jong RH, Elashoff RM (1975) Minimum alveolar concentrations ( MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 42: 197–200Google Scholar
  7. 7.
    DiFazio CA, Brown RE, Ball CG, Heckel CG, Kennedy SS (1972) Additive effects of anesthetics and theories of anesthesia. Anesthesiology 36: 57–63CrossRefGoogle Scholar
  8. 8.
    Cole DJ, Kalichman MW, Shapiro HM (1989) The nonlinear contribution of nitrous oxide at sub-MAC concentrations to enflurane MAC in rats. Anesth Analg 68: 556–562PubMedCrossRefGoogle Scholar
  9. 9.
    Cole DJ, Kalichman MW, Shapiro HM, Drummond JC (1990) The nonlinear potency of sub-MAC concentrations of nitrous oxide in decreasing the anesthetic requirement of enflurane, halothane, and isoflurane in rats. Anesthesiology 73: 93–99PubMedCrossRefGoogle Scholar
  10. 10.
    Chortkoff BS, Bennet HL, Eger EI (1993) Does nitrous oxide antagonize isoflurane-induced suppression of learning? Anesthesiology 79: 724–732PubMedCrossRefGoogle Scholar
  11. 11.
    Yli-Hankala A, Lindgren L, Porkkala T, Jantti V (1993) Nitrous oxide-mediated activation of the EEG during isoflurane anaesthesia in patients. Br J Anaesth 70: 54–57PubMedCrossRefGoogle Scholar
  12. 12.
    Deady JE, Koblin DD, Eger EI, Heavner JE, D’Aoust B (1981) Anesthetic potencies and the unitary theory of narcosis. Anesth Analg 60: 380–384PubMedCrossRefGoogle Scholar
  13. 13.
    Eger EI (1989) Does 1 + 1 = 2? (Editorial) Anesth Analg 68: 551–552PubMedGoogle Scholar
  14. 14.
    Murray DJ, Metha WP, Forbes RB (1991) The additive contribution of nitrous oxide to isoflurane MAC in infants and children. Anesthesiology 75: 186–190PubMedCrossRefGoogle Scholar
  15. 15.
    Hornbein TF, Eger EI, Winter PM, Smith G, Wetstone D, Smith KH (1982) The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 61: 553–556PubMedCrossRefGoogle Scholar
  16. 16.
    Eger EI, Lampe GH, Wauk LZ, Whitendale P, Cahalan MK (1990) Clinical pharmacology of nitrous oxide: an argument for its continued use. Anesth Analg 71: 575–585PubMedCrossRefGoogle Scholar
  17. 17.
    Dwyer R, Bennett HL, Eger EI, Heilbron D (1992) Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology 77: 888–898PubMedCrossRefGoogle Scholar
  18. 18.
    Shim CY, Andersen NB (1992) Minimal alveolar concentration ( MAC) and dose-response curves in anesthesia. Anesthesiology 36: 146–151Google Scholar
  19. 19.
    Kissin I (1993) General anesthetic action: an obsolete notion? Anesth Analg 76: 215–218PubMedCrossRefGoogle Scholar
  20. 20.
    Rampil I J, Mason P, Singh H (1993) Anesthetic potency ( MAC) is independent of forebrain structures in the rat. Anesthesiology 78: 707–712Google Scholar
  21. 21.
    Rampil IJ (1993) Is MAC testing a spinal reflex? Anesthesiology 79-. A422 (abstract)Google Scholar
  22. 22.
    Antigonini JF, Schwartz K (1993) Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 79: 1244–1249CrossRefGoogle Scholar
  23. 23.
    Schwilden H, Stoeckel H (1987) Quantitative EEG analysis during anaesthesia with isoflurane in nitrous oxide at 1.3 and 1.5 MAC. Br J Anaesth 59: 738–745PubMedCrossRefGoogle Scholar
  24. 24.
    Rampil IJ, Laster MJ (1992) No correlation between quantitative electroencephalographic measurement and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology 77: 920–925PubMedCrossRefGoogle Scholar
  25. 25.
    Komatsu T, Shingu K, Tomemori M, Urabe N, Mori K (1981) Nitrous oxide activates the supraspinal pain inhibition system. Acta Anaesth Scand 25: 519–522PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H. Schwilden
  • J. Schüttler

There are no affiliations available

Personalised recommendations