Skip to main content
Book cover

Diuretics pp 67–114Cite as

Basic Concepts of Renal Physiology

  • Chapter
  • 513 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 117))

Abstract

The most obvious function of the kidney is the excretion of xenobiotics, excessive electrolytes and trace elements, and unnecessary and/or harmless metabolic products such as uric acid, urea and ammonia. Through its excretory function, the kidney plays a pivotal role in the regulation of volume and ion composition of the body fluids. For instance, it participates in the regulation of K+, Na+, CI, HCO, Ca2+, Mg2+ and HPO2. content of the body and thus influences intracellular fluid, extra cellular fluid, blood pressure, acid–base balance, mineral metabolism, etc. Accordingly, the kidney is the target of various hormones. Furthermore, the kidney releases or activates hormones itself, such as erythropoietin, calcitriol [1,25–(OH)2D3], angiotensin, prostaglandins and kinins. The kidney also carries out several important metabolic functions, such as gluconeogenesis, degradation of fatty acids and inactivation of hormones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Al–Awqati Q (1986) Proton–translocating ATPases. Annu Rev Cell Biol 2:179–199

    Article  PubMed  CAS  Google Scholar 

  • Alfrey AC (1992) Disorders of magnesium metabolism. In: Seldin DW, Giebisch G (eds) The kidney, 2nd edn. Raven, New York, pp 2357–2374

    Google Scholar 

  • Alper SL, Natale J, Gluck S, Lodish HF, Brown D (1989) Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+–ATPase. Proc Natl Acad Sci USA 86:5429–5433

    Article  PubMed  CAS  Google Scholar 

  • Alpern RJ (1985) Mechanism of basolateral membrane H+/OH-/HCO3 transport in the rat proximal convoluted tubule. A sodium–coupled electrogenic process. J Gen Physiol 86:613–636

    Article  PubMed  CAS  Google Scholar 

  • Alpern RJ, Chambers M (1987) Basolateral membrane CI/HCO3 exchange in the rat proximal convoluted tubule. Na–dependent and –independent modes. J Gen Physiol 89:581–598

    Article  PubMed  CAS  Google Scholar 

  • Beck F–X, Dörge A, Giebisch G, Thurau K (1988) Renal excretion of rubidium and potassium: an electron microprobe and clearance study. Kidney Int 34:455–462

    Article  PubMed  CAS  Google Scholar 

  • Ballermann BJ, Zeidel ML (1992) Atrial natriuretic hormone. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd end. Raven, New York, pp 1843–1884

    Google Scholar 

  • Bell PD, Lapointe J–Y, Cardinal J (1989) Direct measurement of basolateral membrane potentials from cells of the macula densa. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 26):F463–F468

    PubMed  CAS  Google Scholar 

  • Berndt TJ, Knox FG (1992) Renal regulation of phosphate excretion. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2511–2532

    Google Scholar 

  • Berry CA, Rector FC Jr (1989) Electroneutral NaCl absorption in the proximal tubule: mechanisms of apical Na–coupled transport. Kidney Int 36:403–411

    Article  PubMed  CAS  Google Scholar 

  • Biagi BA, Sohtell M (1986) Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule. Am J Physiol 250 (Renal Fluid Electrolyte Physiol 19):F267–F272

    PubMed  CAS  Google Scholar 

  • Biber J (1989) Cellular aspects of proximal tubular phosphate reabsorption. Kidney Int 36:360–369

    Article  PubMed  CAS  Google Scholar 

  • Biber J, Murer H (1993) Towards a molecular view of renal proximal tubular reabsorption of phosphate. Renal Physiol Biochem 16:37–47

    PubMed  CAS  Google Scholar 

  • Biemesderfer D, Stanton B, Wade JB, Kashgarian M, Giebisch G (1989) Ultrastruc– ture of Amphiuma distal nephron: evidence for cellular heterogeneity. Am J Physiol 256 (Cell Physiol 25):C849–C857

    PubMed  CAS  Google Scholar 

  • Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 264:C1367–C1387

    PubMed  CAS  Google Scholar 

  • Bleich M, Schlatter E, Greger R (1990) The luminal K+ channel of the thick ascending limb of Henle’s loop. Pflugers Arch 415:449–460

    Article  PubMed  CAS  Google Scholar 

  • Boron WF (1992) Control of intracellular pH. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 219–264

    Google Scholar 

  • Boron WF, Boulpaep EL (1983a) Intracellular pH regulation in the renal proximal tubule of the salamander. Na–H exchange. J Gen Physiol 81:29–52

    Article  PubMed  CAS  Google Scholar 

  • Boron WF, Boulpaep EL (1983b) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3 - transport. J Gen Physiol 81:53–94

    Article  PubMed  CAS  Google Scholar 

  • Boron WF, Boulpaep EL (1989) The electrogenic Na/HCO3 cotransporter. Kidney Int 36:392–402

    Article  PubMed  CAS  Google Scholar 

  • Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307:652–659

    Article  PubMed  CAS  Google Scholar 

  • Brenner BM, Hostetter TH, Humes HD (1978) Molecular basis of proteinuria of glomerular origin. N Engl J Med 298:826–833

    Article  PubMed  CAS  Google Scholar 

  • Briggs JP, Schnermann J (1986) Macular densa control of renin secretion and glomerular vascular tone: evidence for common cellular mechanisms. Renal Physiol 9:193–203

    PubMed  CAS  Google Scholar 

  • Brosnan JT, Vinay P, Gougoux A, Halperin ML (1988) Renal ammonium production and its implications for acid–base balance. In: Häussinger D (ed) pH homeostasis. Mechanisms and control. Academic, New York, pp 281–304

    Google Scholar 

  • Brown D, Hirsch S, Gluck S (1988) Localization of proton–pumping ATPase in rat kidney. J Clin Invest 82:2114–2126

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ, Dusso AS, Slatopolsky E (1992) Vitamin D. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1505–1552

    Google Scholar 

  • Burckhardt BC, Frömter E (1987) Evidence for OH/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO-free solutions. Pflugers Arch 409:132–137

    Article  PubMed  CAS  Google Scholar 

  • Burckhardt G, Kinne RKH (1992) Transport proteins: cotransporters and counter–transporters. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 537–586

    Google Scholar 

  • Burckhardt G, Ullrich KJ (1989) Organic anion transport across the contraluminal membrane – dependence on sodium. Kidney Int 36:370–377

    Article  PubMed  CAS  Google Scholar 

  • Cogan MG (190) Renal effects of atrial natriuretic factor. Annu Rev Physiol 52:699–708

    Article  Google Scholar 

  • Costanzo LS, Windhager EE (1992) Renal regulation of calcium balance. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2375–2394

    Google Scholar 

  • Dawson DC (1992) Water transport: principles and perspectives. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 301–316

    Google Scholar 

  • DeWeer P (1992) Cellular sodium–potassium transport. In: Seldin DQ, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 93–112

    Google Scholar 

  • Dietl P, Oberleithner H (1987) Ca2+ transport in diluting segment of frog kidney. Pflugers Arch 410:63–68

    Article  PubMed  CAS  Google Scholar 

  • Dietl P, Wang W, Oberleithner H (1987) Fused cells of frog proximal tubule. I. Basic membrane properties. J Membr Biol 100:43–51

    Article  PubMed  CAS  Google Scholar 

  • Dietl P, Schwiebert E, Stanton B (1991) Cellular mechanisms of chloride transport in the cortical collecting duct. Kidney Int 40 [Suppl 33]:S125–S130

    Google Scholar 

  • DiStefano A, Wittner M, Gebler B, Greger R (1988) Increased Ca2+ or Mg2+ concentration reduces relative tight–junction permeability to Na+ in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Renal Physiol Biochem 11:70–79

    CAS  Google Scholar 

  • Dominguez JH, Rothrock JK, Macias WL, Price J (1989) Na+ electrochemical gradient and Na+–Ca2+ exchange in rat proximal tubule. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 26):F531–F538

    PubMed  CAS  Google Scholar 

  • Doucet A (1988) Function and control of Na–K–ATPase in single nephron segments of the mammalian kidney. Kidney Int 34:749–760

    Article  PubMed  CAS  Google Scholar 

  • Doucet A, Marsy S (1987) Characterization of K–ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F418–F423

    PubMed  CAS  Google Scholar 

  • Dworkin LD, Brenner BM (1992) Biophysical basis of glomerular filtration. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 979–1016

    Google Scholar 

  • Ellison DH, Velazquez H, Wright FS (1987) Mechanisms of sodium, potassium and chloride transport by the renal distal tubule. Miner Electrolyte Metab 13:422–432

    PubMed  CAS  Google Scholar 

  • Eveloff J, Warnock DG (1987) K–Cl transport systems in rabbit renal basolateral membrane vesicles. Am J Physiol 252 (Renal Fluid Electrolyte Physiol 21): F883–F889

    PubMed  CAS  Google Scholar 

  • Friedman PA, Andreoli TE (1982) Co2–stimulated NaCI absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na+/H+ and Cr/HCO- exchange in apical plasma membranes. J Gen Physiol 80:683–711

    Article  PubMed  CAS  Google Scholar 

  • Frindt G, Lee CO, Yang JM, Windhager EE (1988) Potential role of cytoplasmic calcium ions in the regulation of sodium transport in renal tubules. Miner Electrolyte Metab 14:40–47

    PubMed  CAS  Google Scholar 

  • Frömter E (1984) Viewing the kidney through microelectrodes. Am J Physiol 247 (Renal Fluid Electrolyte Physiol 16):F695–F705

    PubMed  Google Scholar 

  • Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenologic description of Na+, CI- and HCO- absorption from proximal tubules of the rat kidney. Pflugers Arch 343:189–220

    Article  PubMed  Google Scholar 

  • Frömter E, Burckhardt BC, Kondo Y (1988) Mechanisms of basolateral base transport in the renal proximal tubule. Ciba Found Symp 139:106–121

    PubMed  Google Scholar 

  • Garg LC, Narang N (1988) Ouabain–insensitive K–adenosine triphosphatase in distal nephron segments of the rabbit. J Clin Invest 81:1204–1208

    Article  PubMed  CAS  Google Scholar 

  • Garg LC, Narang N (1989) Suppression of ouabain–insensitive K–ATPase activity in rabbit nephron segments during chronic hyperkalemia. Renal Physiol Biochem 12:295–301

    PubMed  CAS  Google Scholar 

  • Garg LC, Narang N (1990) Effects of low–potassium diet on N–ethylmaleimide–sensitive ATPase in the distal nephron segments. Renal Physiol Biochem 13: 129–136

    PubMed  CAS  Google Scholar 

  • Garvin JL, Burg MB, Knepper MA (1988) Active NHj absorption by the thick ascending limb. Am J Physiol 255 (Renal Fluid Electrolyte Physiol 24):F57–F65

    PubMed  CAS  Google Scholar 

  • Geibel J, Giebisch G, Boron WF (1989a) Effects of acetate on luminal acidification processes in the S3 segment of the rabbit proximal tubule. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 26):F586–F594

    PubMed  CAS  Google Scholar 

  • Geibel J, Giebisch G, Boron WF (1989b) Basolateral sodium–coupled acid–base transport mechanisms of the rabbit proximal tuble. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 26):F790–F797

    PubMed  CAS  Google Scholar 

  • Gennari FJ, Maddox DA (1992) Renal regulation of acid–base homeostatsis: integrated resposne. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2695–2732

    Google Scholar 

  • Giebisch G, Hunter M, Kawahara K (1990) Apical potassium channels in Amphiuma diluting segment: effect of barium. J Physiol (Lond) 420:313–323

    CAS  Google Scholar 

  • Gluck S, Caldwell J (1988) Proton–translocating ATPase from bovine kidney medulla: partial purification and reconstitution. Am J Physiol 254 (Renal Fluid Electrolyte Physiol 23):F71–F79

    PubMed  CAS  Google Scholar 

  • Gmaj P, Murer H, Kinne R (1979) Calcium ion transport across plasma membranes isolated from rat kidney cortex. Biochem J 178:549–557

    PubMed  CAS  Google Scholar 

  • Gogelein H, Greger R (1986) Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflugers Arch 406:198–203

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez–Campoy JM, Knox FG (1992) Integrated responses of the kidney to alterations in extracellular fluid volume. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2041–2098

    Google Scholar 

  • Good DW (1985) Sodium–dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am J Physiol 248 (Renal Fluid Electrolyte Physiol 17):F821–F829

    PubMed  CAS  Google Scholar 

  • Good DW, Knepper MA, Burg MB (1984) Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am J Physiol 247 (Renal Fluid Electrolyte Physiol 16):F35–F44

    PubMed  CAS  Google Scholar 

  • Greger R (1981) Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle: a sodium dependent process. Pflugers Arch 390:38–43

    Article  PubMed  CAS  Google Scholar 

  • Dreger R (1985) Ion transport mechamisms in thick ascending limb of Henle’s loop of mammalian nephron. Physiol Rev 65:760–797

    Google Scholar 

  • Greger R, Schlatter E (1981) Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 392:92–94

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E (1983) Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch 396:325–334

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Velazquez H (1987) The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism. Kidney Int 31:590–596

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Lang F (1983) Evidence for electroneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflugers Arch 396:308–314

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Weidtke C, Schlatter E, Wittner M, Gebler B (1984a) Potassium activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflugers Arch 401:52–57

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Wittner M, Schlatter E, Di Stefano A (1984b) Na+2Cl- K+–cotransport in the thick ascending limb of Henle’s loop and mechanism of action of loop diuretics. In: Hoshi T (ed) Coupled transport in nephron. Mechanisms and pathophysiology. Miura Medical Research Foundation, Tokyo, pp 96–118

    Google Scholar 

  • Greger R, Bleich M, Schlatter E (1990) Ion channels in the thick ascending limb of Henle’s loop. Renal Physiol Biochem 13:37–50

    PubMed  CAS  Google Scholar 

  • Gross P, Minuth WW, Ketteler M, Frömter E (1988) Ionic conductances of cultured principal cell epithelium of renal collecting duct. Pflugers Arch 412:434–441

    Article  PubMed  CAS  Google Scholar 

  • Grupp C, Pavenstädt–Grupp I, Grunewald RW, Bevan C, Stokes JB III, Kinne RKH (1989) A Na–K–Cl cotransporter in isolated rat papillary collecting duct cells. Kidney Int 36:201–209

    Article  PubMed  CAS  Google Scholar 

  • Guggino WB (1986) Functional heterogeneity in the early distal tubule of the Amphiuma kidney: evidence for two modes of Cl- and K+ transport across the basolateral cell membrane. Am J Physiol 250 (Renal Fluid Electrolyte Physiol 19):F430–F440

    PubMed  CAS  Google Scholar 

  • Guggino WB, Guggino SE (1989) Renal anion transport. Kidney Int 36:385–391

    Article  PubMed  CAS  Google Scholar 

  • Gullans SR, Mandel LJ (1992) Coupling of energy to transport in proximal and distal nephron. In: Seldin DW, Giebisch G (eds) The kidney, 2nd edn. Raven, New York, pp 1291–1338

    Google Scholar 

  • Haberle DA (1988) Hemodynamic interactions between intrinsic blood flow control mechanisms in the rat kidney. Renal Physiol Biochem 11:289–315

    PubMed  CAS  Google Scholar 

  • Hall JE, Brands MW (1992) The renin–angiotensin–aldosterone systems: renal mechanisms and circulatory homeostasis. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1455–1504

    Google Scholar 

  • Halperin ML, Kamel KS, Ethier JH, Stinebaugh BJ, Jungas RL (1992) Biochemistry and physiology of ammonium excretion. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2645–2680

    Google Scholar 

  • Hamm LL, Simon EE (1987) Roles and mechanisms of urinary buffer excretion. Am J Physiol 253:F595–F605

    PubMed  CAS  Google Scholar 

  • Hebert SC, Andreoli TE (1984a) Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. II. Deter–minants of the ADH–mediated increases in transpithelial voltage and in net CI-absorption. J Membr Biol 80:221–233

    Article  PubMed  CAS  Google Scholar 

  • Hebert SC, Andreoli TE (1984b) Control of NaCl transport in the thick ascending limb. Am J Physiol 246 (Renal Fluid Electrolyte Physiol 15):F745–F756

    PubMed  CAS  Google Scholar 

  • Hebert SC, Andreoli TE (1986) Ionic conductance pathways in the mouse medullary thick ascending limb of Henle. J Gen Physiol 87:567–590

    Article  PubMed  CAS  Google Scholar 

  • Hebert SC, Culpepper RM, Andreoli TE (1981) NaCl transport in mouse medullarythick ascending limbs. Am J Physiol 241 (Renal Fluid Electrolyte Physiol 10): F412–F442

    PubMed  CAS  Google Scholar 

  • Hebert SC, Friedman PA, Andreoli TE (1984) Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. ADH increases transcellular conductance pathways. J Membre Biol 80:201–219

    Article  CAS  Google Scholar 

  • Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose co–transporter. Nature 330:379–381

    Article  PubMed  CAS  Google Scholar 

  • Holthöfer H, Schulte BA, Pasternack G, Siegel GJ, and Spicer SS (1987) Three distinct cell populations in rat kidney collecting duct. Am J Physiol 253 (Cell Physiol 22):C323–C328

    PubMed  Google Scholar 

  • Hoshi T (1990) Electrophysiology of Triturus nephron: cable properties and elec–trogenic transport systems. Kidney Int 37:157–170

    Article  PubMed  CAS  Google Scholar 

  • Hoshi T, Sudo K, Suzuki Y (1976) Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in triturus proximal tubule. Biochm Biophys Acta 448:492–504

    Article  CAS  Google Scholar 

  • Hunter M, Giebsch G (1987) Multi–barrelled K channels in renal tubules. Nature 327:522–524

    Article  PubMed  CAS  Google Scholar 

  • Hunter M, Giebisch G (1988) Calcium–activated K–channels of Amphiuma early distal tubule: inhibition by ATP. Pflugers Arch 412:331–333

    Article  PubMed  CAS  Google Scholar 

  • Hunter M, Kawahara K, Giebisch G (1986) Potassium channels along the nephron. Fed Proc 45:2723–2726

    PubMed  CAS  Google Scholar 

  • Imai M, Yoshitomi K (1990) Electrophysiological study of inner medullary collecting duct of hamsters. Pflugers Arch 416:180–188

    Article  PubMed  CAS  Google Scholar 

  • Imai M, Taniguchi J, Tabei K (1987) Function of thin loops of Henle. Kidney Int 31:565–579

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar A, Cheng L, Liang CT, Sacktor B (1984) Sodium gradient–dependent calcium uptake in renal basolateral membrane vesicles: effect of parathyroid hormone. J Biol Chem 259:10827–10833

    PubMed  CAS  Google Scholar 

  • Joergensen PL (1980) Sodium and potassium ion pump in kidney tubules. Physiol Rev 60:864–917

    CAS  Google Scholar 

  • Kahn AM (1989) Indirect coupling between sodium and urate transport in the proximal tubule. Kidney Int 36:378–384

    Article  PubMed  CAS  Google Scholar 

  • Karniski LP, Aronson PS (1985) Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci USA 82:6362–6365

    Article  PubMed  CAS  Google Scholar 

  • Katz AI (1982) Renal Na–K–ATPase: its role in tubular sodium and potassium transport. Am J Physiol 242 (Renal Fluid Electrolyte Physiol 11):F207–F219

    PubMed  CAS  Google Scholar 

  • Kawahara K, Hunter M, Giebisch G (1990) Calcium–activated potassium channels in the luminal membrane of Amphiuma diluting segment: voltage–dependent block by intracellular Na+ upon depolarisation. Pflugers Arch 416:422–427

    Article  PubMed  CAS  Google Scholar 

  • Kinne R (1976) Properties of the glucose transport system in the renal brush border membrane. Curr Top Membr Transp 8:209–267

    CAS  Google Scholar 

  • Kinne R, Kinne–Saffran E, Schölermann B, Schütz H (1986) The anion speciflty of the sodium–potassium–chloride cotransporter in rabbit kidney outer medulla: studies on medullary plasma membranes. Pflugers Arch 407 [Suppl 2]:S168–S173

    Article  PubMed  CAS  Google Scholar 

  • Kinne–Saffran E, Beauwens R, Kinne R (1982) An ATP–driven proton pump in brush–border membranes from rat renal cortex. J Membr Biol 64:67–76

    Article  PubMed  Google Scholar 

  • Kirk KL, Schafer JA (1992) Water transport and osmoregulation by antidiuretic hormone in terminal nephron segments. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1693–1726

    Google Scholar 

  • Knepper MA, Packer R, Good DW (1989) Ammonium transport in the kidney. Physiol Rev 69:179–249

    PubMed  CAS  Google Scholar 

  • Koeppen BM (1987) Electrophysiological identification of principal and intercalated cells in the rabbit outer medullary collecting duct. Pflugers Arch 409:138–141

    Article  PubMed  CAS  Google Scholar 

  • Koeppen BM (1989) Electrophysiology of collecting duct H+ secretion: effect of inhibitors. Am J Physiol 256 (Renal Fluid Electrolyte Physiol 25):F79–F84

    PubMed  CAS  Google Scholar 

  • Koepsell H, Fritzsch G, Korn K, Madrala A (1990) Two substrate sites in the renal Na+–D–glucose cotransporter studied by model analysis of phlorizin binding and D–glucose transport measurements. J Membr Biol 114:113–132

    Article  PubMed  CAS  Google Scholar 

  • Kondo Y, Frömter E (1990) Evidence of chloride/bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflugers Arch 415:726–733

    Article  PubMed  CAS  Google Scholar 

  • Kristensen P, Ussing H (1992) Epithelial organization. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 265–286

    Google Scholar 

  • Kurokawa K, Fukagawa M, Hagashi M, Saruta T (1992) Renel receptors and cellular mechanisms of hormone action in the kidney. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1339–1372

    Google Scholar 

  • Kurtz I (1989) Basolateral membrane Na+/H+ antiport, Na+/base cotransport, and Na+ independent Cl-/base exchange in the rabbit S3 proximal tubule. J Clin Invest 83:616–622

    Article  PubMed  CAS  Google Scholar 

  • Lang F (1980) Renal handling of calcium and phosphate. Klin Wochonschr 58:985–1003

    Article  CAS  Google Scholar 

  • Lang F (1982) Nierendurchblutung. In: Losse H, Renner E (eds) Klinische Nephro–logie. Thieme, Stuttgart, p 43

    Google Scholar 

  • Lang F (1988) NaCl transport in the kidney. In: Greger R (ed) Advances in comparative and environmental physiology. Springer, Berlin Heidelberg New York, pp 153–188

    Google Scholar 

  • Lang F, Rehwald W (1992) Potassium channels in renal epithelial transport regulation. Am J Physiol 72:1–32

    CAS  Google Scholar 

  • Lang F, Häussinger D, Tschernko E, Capasso G, De Santo NG (1992) Proteins, the liver and the kidney – hepatic regulation of renal function. Nephron 61:1–4

    Article  PubMed  CAS  Google Scholar 

  • Laragh JH (1992) The renin system and the renal regulation of blood pressure. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1411–1454

    Google Scholar 

  • Light DB, Schwiebert EM, Fejes–Toth G, Naray–Fejes–Toth A, Karlson KH, McCann FV, Stanton BA (1990) Chloride channels in the apical membrane of cortical collecting duct cells. Am J Physiol 258 (Renal Fluid Electrolyte Physiol 27):F273–F280

    PubMed  CAS  Google Scholar 

  • Lopes AG, Amzel LM, Markakis D, Guggino WB (1988) Cell volume regulation by the thin descending limb of Henle’s loop. Proc Natl Acad Sci USA 85:2873–2877

    Article  PubMed  CAS  Google Scholar 

  • Madsen KM, Clapp WL, Verlander JW (1988) Structure and function of the inner medullary collecting duct. Kidney Int 34:441–454

    Article  PubMed  CAS  Google Scholar 

  • Madsen KM, Tisher CC (1988)Structural–functional relationships along the distal nephron. Am J Physiol 250 (Renal Fluid Electrolyte Physiol 19):F1–F15

    Google Scholar 

  • Martinez F, Manganel M, Montrose–Rafiza–Deh C, Werner D, Roch–Ramel F (1990) Transport of urate and p–aminohippurate in rabbit renal brush–border membranes. Am J Physiol 258 (Renal Fluid Electrolyte Physiol 27):F1145–F1153

    PubMed  CAS  Google Scholar 

  • Mason J (1986) The pathophysiology of ischemic acute renal failure. Renal Physiol 9:129–147

    PubMed  CAS  Google Scholar 

  • Matsuzaki K, Stokes JB, Schuster VL (1989) Stimulation of Cl- self exchange by intracellular HCO3 - in rabbit cortical collecting duct. Am J Physiol 257 (Cell Physiol 26):C94–C101

    PubMed  CAS  Google Scholar 

  • Mene P, Dunn MJ (1992) Vascular, glomerular, and tubular effects of angiotensin II, kinins, and prostaglandins. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1205–1248

    Google Scholar 

  • Merot J, Bidet M, Gachot B, Le Maout S, Koechlin N, Tauc M, Poujeol P (1989) Electrical properties of rabbit early distal convoluted tubule in primary culture. Am J Physiol 257 (Renal Fluid Electrolyte Physiol 26):F288–F299

    PubMed  CAS  Google Scholar 

  • Michel CC (1992) Capillary exchange. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 61–92

    Google Scholar 

  • Molony DA, Reeves WB, Andreoli TE (1989) Na+:K+:2C1- cotransport and the thick ascending limb. Kidney Int 36:418–426

    Article  PubMed  CAS  Google Scholar 

  • Muff R, Fischer JA, Biber J, Murer H (1992) Parathyroid hormone receptors in control of proximal tubule function. Annu Rev Physiol 54:67–80

    Article  PubMed  CAS  Google Scholar 

  • Murer H, Biber J (1992) Renal tubular phosphate transport: cellular mechanisms. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2481–2510

    Google Scholar 

  • Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush–border–membrane vesicles isolated from rat small intestine and kidney. Biochem J 154:597–604

    PubMed  CAS  Google Scholar 

  • Murer H, Burckhardt G (1983) Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev Physiol Biochem Pharmacol 96:1–15

    Article  PubMed  CAS  Google Scholar 

  • Muto S, Giebisch G, Sansom S (1987) Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F742–F752

    PubMed  CAS  Google Scholar 

  • Muto S, Yasoshima K, Yoshitomi K, Imai M, Asano Y (1990) Electrophysiological identification of alpha and beta–inter–calated cells and their distribution along the rabbit distal nephron segments. J Clin Invest 86:1829–1839

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Giebisch G, Lang F, Wang W (1982a) Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin Wochenschr 60:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Lang F, Wang W, Giebisch G (1982b) Effects of inhibition of chloride transport in intracellular sodium activity in distal amphibian nephron. Pflugers Arch 394:55–60

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Greger R, Neuman S, Lang F, Giebisch G, Deetjen P (1983a) Omission of luminal potassium reduces cellular chloride in early distal tubule of amphibian kidney. Pflugers Arch 398:18–22

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Guggino W, Giebisch G (1983b) The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation. Pflugers Arch 396:27–33

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Lang F, Greger R, Wang W, Giebisch G (1983c) Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pflugers Arch 396:34–40

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Ritter M, Lang F, Guggino W (1983d) Antracene–9–carboxylic acid inhibits renal chloride reabsorption. Pflugers Arch 398:172–174

    Article  PubMed  CAS  Google Scholar 

  • Pallone TL, Robertson CR, Jamison RL (1990) Renal medullary microcirculation. Physiol Rev 3:885–920

    Google Scholar 

  • Palmer LG (1990) Epithelial Na channels: the nature of the conducting pore. Renal Physiol Biochem 13:51–58

    PubMed  CAS  Google Scholar 

  • Palmer LG, Frindt G (1986) Amiloride–sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci USA 83:2767–2770

    Article  PubMed  CAS  Google Scholar 

  • Palmer LG, Frndt G (1988) Conductance and gating of epithelial Na channels from rat cortical collecting tubule. Effects of luminal Na and Li. J Gen Physiol 92:121–138

    Article  PubMed  CAS  Google Scholar 

  • Palmer LG, Sackin H (1992) Electrophysiological analysis of transepithelial transport. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 361–406

    Google Scholar 

  • Paulais M, Teulon J (1990) cAMP–activated chloride channel in the basolateral membrane of the thick ascending limb of the mouse kidney. J Membr Biol 113:253–260

    Article  PubMed  CAS  Google Scholar 

  • Ridderstrale Y, Kashgarian M, Koeppen B, Giebisch G, Stetson D, Ardito T, Stanton B (1988) Morphological heterogeneity of the rabbit collecting duct. Kidney Int 34:655–670

    Article  PubMed  CAS  Google Scholar 

  • Ritter M, Paulmichl M, Lang F (1991) Further characterization of volume regulatory decrease in cultured renal epitheloid (MDCK–)cells. Pflugers Arch 418:35–39

    Article  PubMed  CAS  Google Scholar 

  • Robertson GL (1992) Regulation of vasopression secretion. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1595–1614

    Google Scholar 

  • Rocha AS, Kudo LH (1990a) Factors governing sodium and chloride transport across the inner medullary collecting duct. Kidney Int 38:654–667

    Article  PubMed  CAS  Google Scholar 

  • Rocha AS, Kudo LH (1990b) Atrial peptide and cGMP effects on NaCl transport in inner medullary collecting duct. Am J Physiol 259 (Renal Fluid Electrolyte Physiol 28):F258–F268

    PubMed  CAS  Google Scholar 

  • Ross CR, Holohan PD (1983) Transport of organic anions and cations in isolated renal plasma membranes. Annu Rev Pharmacol Toxicol 23:65–85

    Article  PubMed  CAS  Google Scholar 

  • Rossier BC, Palmer LG (1992) Mechanisms of aldosterone action on sodium and potassium transport. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1373–1410

    Google Scholar 

  • Roy DR, Layton HE, Jamison RL (1992) Countercurrent mechanism and its regulation. In: Seldin DW, Giebisch G (eds) The kidney, 2nd edn. Raven, New York, pp 1649–1692

    Google Scholar 

  • Sacktor B (1989) Sodium–coupled hexose transport. Kidney Int 36:342–350

    Article  PubMed  CAS  Google Scholar 

  • Samarzija I, Frömter E (1982a) Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pflugers Arch 393:199–209

    Article  CAS  Google Scholar 

  • Samarzija I, Frömter E (1982b) Electrophysiological analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pflugers Arch 393:210–214

    Article  PubMed  CAS  Google Scholar 

  • Samarzija I, Frömter E (1982c) Electrophysiological analysis of rat renal sugar and amino acid transport. V. Acidic amino acids. Pflugers Arch 393:215–221

    Article  PubMed  CAS  Google Scholar 

  • Samarzija I, Hinton BT, Frömter E (1982) Electrophysiological analysis of rat renal sugar and amino acid transport. II. Dependence on various transport parameters and inhibitors. Pflugers Arch 393:190–197

    Article  PubMed  CAS  Google Scholar 

  • Sands JM, Knepper MA, Spring KR (1986) Na–K–Cl cotransport in apical membrane of rabbit renal papillary surface epithelium. Am J Physiol 251 (Renal Fluid Electrolyte Physiol 20):F475–F484

    PubMed  CAS  Google Scholar 

  • Sands JM, Kokko JP, Jacobson HR (1992) Intrarenal heterogeneity: vascular and tubular. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1098–1156

    Google Scholar 

  • Sansom SC, Weinman EJ, O’Nell RG (1984) Microelectrode assessment of chloride–conductive properties of cortical collecting duct. Am J Physiol 247 (Renal Fluid Electrolyte Physiol 16):F291–F302

    PubMed  CAS  Google Scholar 

  • Sansom SC, Agulian S, Muto S, Illig V, Giebisch G (1989) K activity of CCD principal cells from normal and DOCA–treated rabbits. Am J Physiol 256 (Renal Fluid Electrolyte Physiol 25):F136–F142

    PubMed  CAS  Google Scholar 

  • Sansom SC, LA B–Q, Carosi SL (1990) Double–barreled chloride channels of collecting duct basolateral membrane. Am J Physiol 259 (Renal Fluid Electrolyte Physiol 28):F46–F52

    PubMed  CAS  Google Scholar 

  • Sasaki S, Ishibashi K, Yoshiyama N, Shiigai T (1988) KC1 co–transport across the basolateral membrane of rabbit renal proximal straight tubules. J Clin Invest 81:194–199

    Article  PubMed  CAS  Google Scholar 

  • Schafer JA, Williams JC Jr (1985) Transport of metabolic substrates by the proximal nephron. Annu Rev Physiol 47:103–125

    Article  PubMed  CAS  Google Scholar 

  • Schild L, Giebisch G, Karniski L, Aronson PS (1986) Chloride transport in the mammalian proximal tubule. Pflugers Arch 407 [Suppl 2]:S156–S159

    Article  PubMed  CAS  Google Scholar 

  • Schild L, Aronson PS, Giebisch G (1990) Effects of apical membrane CI-–formate exchange on cell volume in rabbit proximal tubule. Am J Physiol 258 (Renal Fluid Electrolyte Physiol 27):F530–F536

    PubMed  CAS  Google Scholar 

  • Schlatter E (1989) Antidiuretic hormone regulation of electrolyte transport in the distal nephron. Renal Physiol Biochem 12:65–84

    PubMed  CAS  Google Scholar 

  • Schlatter E, Schafer J A (1987) Electrophysiological studies in principal cells ofrat cortical collecting tubules. ADH increases the apical membrane Na+– conductance. Pflugers Arch 409:81–92

    Article  PubMed  CAS  Google Scholar 

  • Schlatter E, Schafer J A (1988) Electrophysiological studies in intercalated cells of rat cortical collecting tubules (CCT) (Abstract). Pflugers Arch 411:R101

    Article  Google Scholar 

  • Schlatter E, Greger R, Schafer J A (1990a) Principal cells of cortical collecting ducts of the rat are not a route of transepithelial CI transport. Pflugers Arch 417:317–323

    Article  PubMed  CAS  Google Scholar 

  • Schlatter E, Salomonsson M, Persson AEG, Greger R (1990b) Macula densa cells reabsorb NaCl via furosemide sensitive Na+–K+–2C12- contransport. In: Puschett JB, Greenberg A (eds) Diuretics III: chemistry, pharmacology, and clinical applications. Elsevier, New York, pp 756–758

    Google Scholar 

  • Schnermann J, Briggs JP (1992) Function of the juxtaglomerular apparatus: control of glomerular hemodynamics and renin secretion. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1249–1290

    Google Scholar 

  • Schuster VL (1990) Organization of collecting duct intercalated cells. Kidney Int 38:668–672

    Article  PubMed  CAS  Google Scholar 

  • Schuster VL, Seldin DW (1992) Renal clearance. In: Seldin DW, Giebisch G (eds) The kidney, 2nd edn. Raven, New York, pp 943–978

    Google Scholar 

  • Schuster VL, Stokes JB (1987) Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F203–F212

    PubMed  CAS  Google Scholar 

  • Schwab A, Oberleithner H (1988) Trans– and paracellular K+ transport in diluting segment of frog kidney. Pflugers Arch 411:268–272

    Article  PubMed  CAS  Google Scholar 

  • Schwartz GJ, Barasch J, Al–Awqati Q (1985) Plasticity of functional epithelial Polarity. Nature 318:368–371

    Article  PubMed  CAS  Google Scholar 

  • Silbernagl S (1988) The renal handling of amino acids and oligopeptides. Physiol Rev 68:911–1007

    PubMed  CAS  Google Scholar 

  • Silbernagl S, Ganapathy V, Leibach FH (1987) H+ gradient–driven dipeptide reabsorption in proximal tubule of rat kidney. Studies in vivo and in vitro. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F448–F457

    PubMed  CAS  Google Scholar 

  • Sonnenberg H (1985) Atrial natriuretic factor – a new hormone affecting kidney function. Klin Wochenschr 63:886–890

    Article  PubMed  CAS  Google Scholar 

  • Stanton BA (1988) Electroneutral NaCl transport by distal tubule: evidence for Na+/H+–Cl-/HCO3 - exchange. Am J Physiol 254 (Renal Fluid Electrolyte Physiol 23):F80–F86

    PubMed  CAS  Google Scholar 

  • Stanton BA (1989) Renal potassium transport: morphological and functional adaptations. Am J Physiol 257 (Regul Integrative Comp Physiol 26):R989–R997

    PubMed  CAS  Google Scholar 

  • Star RA, Burg MB, Knepper MA (1985) Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange. J Clin Invest 76:1123–1130

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz PR (1986) Cellular organization of urinary acidification. Am J Physiol 251 (Renal Fluid Electrolyte Physiol 20):F173–F187

    PubMed  CAS  Google Scholar 

  • Stewart AF (1992) Hypercalcemic and hypocalcemic states. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2431–2460

    Google Scholar 

  • Stokes JB (1989) Electroneutral NaCl transport in the distal tubule. Kidney Int 36:427–433

    Article  PubMed  CAS  Google Scholar 

  • Stokes JB (1990) Sodium and potassium transport by the collecting duct. Kidney Int 38:679–686

    Article  PubMed  CAS  Google Scholar 

  • Talor Z, Arruda JAL (1986) Na–Ca exchange in renal tubular basolateral membranes. Miner Electrolyte Metab 12:239–245

    PubMed  CAS  Google Scholar 

  • Terada Y, Knepper MA (1990) Thiazide–sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol 259 (Renal Fluid Electrolyte Physiol 28): F519–F528

    PubMed  CAS  Google Scholar 

  • Tiruppathi C, Ganapathy V, Leibach FH (1990a) Evidence for tripeptide–proton symport in renal brushborder membrane vesicles. J Biol Chem 265:2048–2053

    PubMed  CAS  Google Scholar 

  • Tiruppathi C, Kulanthaivel P, Ganapathy V, Leibach FH (1990b) Evidence for tripeptide/H+ co–transport in rabbit renal brush–border membrane vesicles. Biochem J 268:27–33

    PubMed  CAS  Google Scholar 

  • Turner RJ (1984) Sodium–dependent sulfate transport in renal outer cortical brush border membrane vesicles. Am J Physiol 247 (Renal Fluid Electrolyte Physiol 16):F793–F798

    PubMed  CAS  Google Scholar 

  • Turrini F, Sabolic I, Zimolo Z, Moewes B, Burckhardt G (1989) Relation ofATPases in rat renal brush border membranes to ATP–driven H+ secretion. J MembrBiol 107:1–12

    CAS  Google Scholar 

  • Ulfendahl HR, Wolgast M (1992) Renal circulation and lymphatics. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 1017–1048

    Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1980) Active sulfate reabsorption in the proximal convolution of the rat kidney: specificity, Na+ and HCO3 - dependence. Pflugers Arch 383:159–163

    Article  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1982a) Active sulfate monocarboxylic acids in the proximal tubule of the rat kidney. I. Transport kinetics of D–lactate, Na+–dependence, pH–dependence and effect of inhibitors. Pflugers Arch 395:212–219

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1982b) Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. II. Specificity for aliphatic compounds. Pflugers Arch 395:220–226

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S, Fasold H (1982c) Reabsorption of monocarboxylic acids in the the proximal tubule of the rat kidney. III. Specificity for aromatic compounds. Pflugers Arch 395:227–231

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987a) Contraluminal para–aminohip–purate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: aliphatic dicarboxylic acids. Pflugers Arch 408:38–45

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Fritzsch G, Klöss S (1987b) Contraluminal para–aminohip–purate (PAH) transport in the proximal tubule of the rat kidney. I. Kinetics, influence of cations, anions, and capillary preperfusion. Pflugers Arch 409:229–235

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1987c) Contraluminal para–aminohippurate (PAH) transport in the proximal tubule of the rat kidney. III. Specificity: monocarboxylic acids. Pflugers Arch 409:547–554

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1988) Contraluminal para–aminohippurate (PAH) transport in the proximal tubule of the rat kidney. IV. Specificity: mono– and polysubstituted benzene analogs. Pflugers Arch 413:134–146

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S (1989a) Contraluminal para–aminohippurate (PAH) transport in the proximal tubule of the rat kidney. V. Interaction with sulfamoyl–and phenoxy diuretics, and with β–lactam antibiotics. Kidney Int 36:78–88

    Article  PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Wieland T, Dekant W (1989b) Contraluminal para–aminohippurate (PAH) transport in the proximal tubule of the rat kidney. VI. Specificity: amino acids, their N–methyl–, N–acetyl– and N–benzoylderivatives; glutathione– and cysteine conjugates, di– and oligopeptides. Pflugers Arch 415: 342–350

    Article  PubMed  CAS  Google Scholar 

  • Velázquez H, Wright FS (1986) Effects of diuretic drugs on Na, CI, and K transport by rat renal distal tubule. Am J Physiol 250 (Renal Fluid Electrolyte Physiol 19):F1013–F1023

    PubMed  Google Scholar 

  • Velázquez H, Good DW, Wright FS (1984) Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol 247 (Renal Fluid Electrolyte Physiol 16):F904–F911

    PubMed  Google Scholar 

  • Velázquez H, Ellison DH, Wright FS (1987) Chloride–dependent potassium secretion in early and late renal distal tubules. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22):F555–F562

    PubMed  Google Scholar 

  • Völkl H, Lang F (1988) Effect of amiloride on cell volume regulation in renal straight proximal tubules. Biochim Biophys Acta 946:5–10

    Article  PubMed  Google Scholar 

  • Völkl H, Lang F (1991) Electrophysiology of ammonia transport in renal straight proximal tubules. Kidney Int 40:1082–1089

    Article  PubMed  Google Scholar 

  • Wang W, Dietl P, Oberleithner H (1987) Evidence for Na+ dependent rheogenic HCO2 - transport in fused cells of frog distal tubules. Pflugers Arch 408:291–299

    Article  PubMed  CAS  Google Scholar 

  • Werner D, Martinez F, Roch–Ramel F (1990) Urate and p–aminohippurate transport in the brush border membrane of the pig kidney. J Pharmacol Exp Ther 252:792–799

    PubMed  CAS  Google Scholar 

  • Whittembury G, Reuss L (1992) Mechanisms of coupling of solute and solvent transport in epithelia. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 317–360

    Google Scholar 

  • Wilson DR, Honrath U, Sonnenberg H (1983a) Furosemide action on collecting ducts: effect of prostaglandin synthesis inhibition. Am J Physiol 244 (Renal Fluid Electrolyte Physiol 13):F666–F673

    PubMed  CAS  Google Scholar 

  • Wilson DR, Honrath U, Sonnenberg H (1983b) Thiazide diuretic effect on medullary collecting duct function in the rat. Kidney Int 23:711–716

    Article  PubMed  CAS  Google Scholar 

  • Windhager E, Frindt F, Yang JM, Lee CO (1986) Intracellular calcium ions asregulators of renal tubular sodium transport. Klin Wochenschr 64:847–852

    Article  PubMed  CAS  Google Scholar 

  • Wingo CS (1989) Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. J Clin Invest 84:361–365

    Article  PubMed  CAS  Google Scholar 

  • Wright SH (1985) Transport of N1_methylnicotinamide across brush–border membrane vesicles from rabbit kidney. Am J Physiol 249 (Renal Fluid Electrolyte Physiol 18):F903–F911

    PubMed  CAS  Google Scholar 

  • Wright FS, Giebisch G (1992) Regulation of potassium excretion. In: Seldin DW, Giebisch G (eds) The kidney. Physiology and pathophysiology, 2nd edn. Raven, New York, pp 2209–2248

    Google Scholar 

  • Yang JM, Lee CO, Windhager EE (1988) Regulation of cytosolic free calcium in isolated perfused proximal tubules of Necturus. Am J Physiol 255 (Renal Fluid Electrolyte Physiol 24):F787–F799

    PubMed  CAS  Google Scholar 

  • Yoshitomi K, Burckhardt B–C, Frömter E (1985) Rheogenic sodium–bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch 405:360–366

    Article  PubMed  CAS  Google Scholar 

  • Yoshitomi K, Koseki C, Taniguchi J, Imai M (1987) Functional heterogeneity in the hamster medullary thick ascending limb of Henle’s loop. Pflugers Arch 408: 600–608

    Article  PubMed  CAS  Google Scholar 

  • Yoshitomi K, Kondo Y, Imai M (1988) Evidence for conductive CI- pathways across the cell emebranes of the thin ascending limb of Henle’s loop. J Clin Invest 82:866–871

    Article  PubMed  CAS  Google Scholar 

  • Zeidel ML (1990) Renal action of atrial natriuretic peptide: regulation of collectionduct sodium and water transport. Annu Rev Physiol 52:747–760

    Article  PubMed  CAS  Google Scholar 

  • Zelikovic I, Chesney RW (1989) Sodium–coupled amino acid transport in renal tubule. Kidney Int 36:351–359

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, F., Busch, A. (1995). Basic Concepts of Renal Physiology. In: Greger, R.F., Knauf, H., Mutschler, E. (eds) Diuretics. Handbook of Experimental Pharmacology, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79565-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79565-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79567-1

  • Online ISBN: 978-3-642-79565-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics