Skip to main content
  • 54 Accesses

Abstract

Cellular stimulation causes the rapid appearance of proteins in the nucleus which function as signal-regulated transcription factors converting membrane events into long-term changes in gene expression. These transcription factors are the products of a variety of immediate early genes (IEG). One important group of these signal- regulated transcription factors are the BZip proteins which contain each a basic (B) and a leucine zipper (Zip) domain that are required for DNA binding and dimerization, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel P, Imagawa M, Chiu R, Stein B, Imbra RJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M (1987) Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49:729–739

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz LA, Riabowol KT, Gilman MZ (1989) Multiple sequence elements of a single functional class are required for cyclic AMP responsiveness of the mouse c-fos promoter. Mol Cell Biol 9:4272–4281

    PubMed  CAS  Google Scholar 

  • Bishop JF, Rinaudo MS, Ritter JK, Chang AC, Conant K, Gehlert DR (1990) A putative AP-2 binding site in the 5′ flanking region of the mouse POMC gene. FEBS Lett 264:125–129

    Article  PubMed  CAS  Google Scholar 

  • Boutillier AL, Sassone Corsi P, Loeffler JP (1991) The protooncogene c-fos is induced by corticotropin-releasing factor and stimulates proopiomelanocortin gene transcription in pituitary cells. Mol Endocrinol 5:1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Boutillier AL, Barthel F, Roberts JL, Loeffler JP (1992) Beta-adrenergic stimulation of c-Fos via protein kinase A is mediated by cAMP regulatory element binding protein (CREB)-dependent and tissue-specific CREB-independent mechanisms in corticotrope cells. J Biol Chem 267:23520–23526

    PubMed  CAS  Google Scholar 

  • Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54:541–552

    Article  PubMed  CAS  Google Scholar 

  • Comb M, Birnberg NC, Seasholtz A, Herbert E, Goodman HM (1986) A cyclic AMP- and phorbol ester-inducible DNA element. Nature 323:353–356

    Article  PubMed  CAS  Google Scholar 

  • Comb M, Mermod N, Hyman SE, Pearlberg J, Ross ME, Goodman HM (1988) Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J 7:3793–3805

    PubMed  CAS  Google Scholar 

  • Deutsch PJ, Hoeffler JP, Jameson JL, Lin JC, Habener JF (1988) Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem 263:18466–18472

    PubMed  CAS  Google Scholar 

  • Drouin J, Nemer M, Charron J, Gagner JP, Jeannotte L, Sun YL, Therrien M, Tremblay Y (1989) Tissue-specific activity of the pro-opiomelanocortin (POMC) gene and repression by glucocorticoids. Genome 31:510–519

    Article  PubMed  CAS  Google Scholar 

  • Edelman AM, Blumenthal DK, Krebs EG (1987) Protein serine/threonine kinases. Annu Rev Biochem 56:567–613

    Article  PubMed  CAS  Google Scholar 

  • Farin CJ, Kley N, Hollt V. (1990) Mechanisms involved in the transcriptional activation of proenkephalin gene expression in bovine chromaffin cells. J Biol Chem 265:19116–19121

    PubMed  CAS  Google Scholar 

  • Fink JS, Verhave M, Walton K, Mandel G, Goodman RH (1991) Cyclic AMP- and phorbol ester-induced transcriptional activation are mediated by the same enhancer element in the human vasoactive intestinal peptide gene. J Biol Chem 266:3882–3887

    PubMed  CAS  Google Scholar 

  • Gonzalez GA, Montminy MR (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680

    Article  PubMed  CAS  Google Scholar 

  • Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724

    Article  PubMed  CAS  Google Scholar 

  • Hai TW, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers [published erratum appears in Genes Dev 1990 Apr;4(4):682]. Genes Dev 3:2083–2090

    Article  PubMed  CAS  Google Scholar 

  • Hoeffler JP, Meyer TE, Waeber G, Habener JF (1990) Multiple adenosine 3′\5′-cyclic [corrected] monophosphate response element DNA-binding proteins generated by gene diversification and alternative exon splicing [published erratum appears in Mol Endocrinol 1990 Jul;4(7): 1016]. Mol Endocrinol 4:920–930

    Article  PubMed  CAS  Google Scholar 

  • Hollt V (1983) Multiple endogenous opioid peptides. Trends Neurosci 6:24–26

    Article  Google Scholar 

  • Hollt V (1993) Regulation of opioid peptide gene expression. In: Herz A (ed) Handbook of experimental pharmacology, Vol104/I Opioids I., Springer Verlag, Berlin, pp 307–364

    Google Scholar 

  • Hollt V, Haarmann I, Millan MJ, Herz A (1987) Prodynorphin gene expression is enhanced in the spinal cord of chronic arthritic rats. Neurosci Lett 73:90–94

    Article  PubMed  CAS  Google Scholar 

  • Huggenvik JI, Collard MW, Stofko RE, Seasholtz AF, Uhler MD (1991) Regulation of the human enkephalin promoter by two isoforms of the catalytic subunit of cyclic adenosine 3′,5′- monophosphate-dependent protein kinase. Mol Endocrinol 5:921–930

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE, Comb M, Pearlberg J, Goodman HM (1989) An AP-2 element acts synergistically with the cyclic AMP- and phorbol ester-inducible enhancer of the human proenkephalin gene. Mol Cell Biol 9:321–324

    PubMed  CAS  Google Scholar 

  • Iadarola MJ, Douglass J, Civelli O, Naranjo JR (1988) Differential activation of spinal cord dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA hybridization. Brain Res 455:205–212

    Article  PubMed  CAS  Google Scholar 

  • Jeannotte L, Trifiro MA, Plante RK, Chamberland M, Drouin J (1987) Tissue-specific activity of the pro-opiomelanocortin gene promoter. Mol Cell Biol 7:4058–4064

    PubMed  CAS  Google Scholar 

  • Karin M (1989) Complexities of gene regulation by cAMP. Trends Genet 5: 65–67

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Smeal T (1992) Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem Sci 17: 418–422

    Article  PubMed  CAS  Google Scholar 

  • Kobierski LA, Chu HM, Tan Y, Comb MJ (1991) cAMP-dependent regulation of proenkephalin by Jun D and Jun B: positive and negative effects of AP-1 proteins. Proc Natl Acad Sci USA 88:10222–10226

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Kobierski LA, Nguyen TV, Heckers S, Hyman SE (1993) The cAMP-response-element-binding protein interacts, but Fos protein does not interact, with the proenkephalin enhancer in rat striatum. Proc Natl Acad Sci USA 9:7005–7009

    Article  Google Scholar 

  • Kraus J, Buchfelder M, Hollt V (1993) Regulatory elements of the human proopiomelanocortin gene promoter. DNA Cell Biol 12:527–536

    Article  PubMed  CAS  Google Scholar 

  • Kraus J, Hollt V (1993) Identification of hormone response elements of the human proopiomelanocortin gene promoter. Eur J Physiol 422:Suppl 1, R87. (Abstract)

    Google Scholar 

  • Liu B, Hammer GD, Rubinstein M, Mortrud M, Low MJ (1992) Identification of DNA elements cooperatively activating proopiomelanocortin gene expression in the pituitary glands of transgenic mice. Mol Cell Biol 12: 3978–3990

    PubMed  CAS  Google Scholar 

  • Loeffler JP, Kley N, Pittius CW, Hollt V (1986) Calcium ion and cyclic adenosine 3′,5′- monophosphate regulate proopiomelanocortin messenger ribonucleic acid levels in rat intermediate and anterior pituitary lobes. Endocrinology 119:2840–2847

    Article  PubMed  CAS  Google Scholar 

  • Lucas JJ, Mellstrom B, Colado MI, Naranjo JR (1993) Molecular mechanisms of pain: serotonin 1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron 10:599–611

    Article  PubMed  CAS  Google Scholar 

  • Masquilier D, Sassone Corsi P (1992) Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem 267:22460–22466

    PubMed  CAS  Google Scholar 

  • McMurray CT, Devi L, Calavetta L, Douglass JO (1989) Regulated expression of the prodynorphin gene in the R2C Leydig tumor cell line. Endocrinology 124:49–59

    Article  PubMed  CAS  Google Scholar 

  • Montminy MR, Sevarino KA, Wagner JA, Mandel G, Goodman RH (1986) Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc Natl Acad Sci USA 83:6682–6686

    Article  PubMed  CAS  Google Scholar 

  • Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328:175–178

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  PubMed  CAS  Google Scholar 

  • Naranjo JR, Mellstrom B, Achaval M, Sassone Corsi P (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron 6:607–617

    Article  PubMed  CAS  Google Scholar 

  • Nishimori T, Buzzi MG, Moskowitz MA, Uhl GR (1989) Preproenkephalin mRNA expression in nucleus caudalis neurons is enhanced by trigeminal stimulation. Brain Res Mol Brain Res 6:203–210

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K, Kowalski K, Traub R, Solodkin A, Iadarola MJ, Ruda MA (1991) Dynorphin expression and Fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Brain Res Mol Brain Res 10:227–233

    Article  PubMed  CAS  Google Scholar 

  • Rauscher FJ, Voulalas PJ, Franza BRJ, Curran T (1988) Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. Genes Dev 2:1687–1699

    Article  PubMed  CAS  Google Scholar 

  • Reisine T, Rougon G, Barbet J, Affolter HU (1985) Corticotropin-releasing factor-induced adrenocorticotropin hormone release and synthesis is blocked by incorporation of the inhibitor of cyclic AMP-dependent protein kinase into anterior pituitary tumor cells by liposomes. Proc Natl Acad Sci USA 82:8261–8265

    Article  PubMed  CAS  Google Scholar 

  • Riegel AT, Remenick J, Wolford RG, Berard DS, Hager GL (1990) A novel transcriptional activator (PO-B) binds between the TATA box and cap site of the pro-opiomelanocortin gene. Nucleic Acids Res 18:4513–4521

    Article  PubMed  CAS  Google Scholar 

  • Roberts JL, Lundblad JR, Eberwine JH, Fremeau RT, Salton SR, Blum M (1987) Hormonal regulation of POMC gene expression in pituitary. Ann N Y Acad Sci 512:275–285

    Article  PubMed  CAS  Google Scholar 

  • Ruppert S, Cole TJ, Boshart M, Schmid E, Schutz G (1992) Multiple mRNA isoforms of the transcription activator protein CREB: generation by alternative splicing and specific expression in primary spermatocytes. EMBO J 11:1503–1512

    PubMed  CAS  Google Scholar 

  • Sonnenberg JL, Rauscher FJ, Morgan JI, Curran T (1989) Regulation of proenkephalin by Fos and Jun. Science 246:1622–1625

    Article  PubMed  CAS  Google Scholar 

  • Stachowiak MK, Hong JS, Viveros OH (1990) Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells. Brain Res 510: 277–288

    Article  PubMed  CAS  Google Scholar 

  • Sukhatme VP, Cao XM, Chang LC, Tsai Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, Shows TB, Curran T et al (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53:37–43

    Article  PubMed  CAS  Google Scholar 

  • Therrien M, Drouin J (1991) Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol Cell Biol 11:3492–3503

    PubMed  CAS  Google Scholar 

  • Therrien M, Drouin J (1993) Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. Mol Cell Biol 13:2342–2353

    PubMed  CAS  Google Scholar 

  • Tremblay Y, Tretjakoff I, Peterson A, Antakly T, Zhang CX, Drouin J (1988) Pituitary-specific expression and glucocorticoid regulation of a proopiomelanocortin fusion gene in transgenic mice. Proc Natl Acad Sci USA 85:8890–8894

    Article  PubMed  CAS  Google Scholar 

  • Usui T, Nakai Y, Tsukada T, Fukata J, Nakaishi S, Naitoh Y, Imura H (1989) Cyclic AMP- responsive region of the human proopiomelanocortin (POMC) gene. Mol Cell Endocrinol 62:141–146

    Article  PubMed  CAS  Google Scholar 

  • Van Nguyen T, Kobierski L, Comb M, Hyman SE (1990) The effect of depolarization on expression of the human proenkephalin gene is synergistic with cAMP and dependent upon a cAMP-inducible enhancer. J Neurosci 10:2825–2833

    PubMed  Google Scholar 

  • Wang X, Bacher B, Hollt V (1993) Gene expression in bovine adrenal chromaffin cells: relationship between c-Fos/c-Jun and proenkephalin. Eur J Physiol 422, Suppl 1, R92. (Abstract)

    Google Scholar 

  • Wellstein A, Dobrenski AF, Radonovich MN, Brady JF, Riegel AT (1991) Purification of PO-B, a protein that has increased affinity for the pro-opiomelanocortin gene promoter after dephosphorylation. J Biol Chem 266:12234–12241

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kraus, J., Bacher, B., Wang, X., Höllt, V. (1995). Immediate-early genes and opioid peptides. In: Tölle, T.R., Schadrack, J., Zieglgänsberger, W. (eds) Immediate-Early Genes in the Central Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79562-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79562-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79564-0

  • Online ISBN: 978-3-642-79562-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics