Skip to main content

Immediate-early genes — how immediate and why early?

  • Chapter
Immediate-Early Genes in the Central Nervous System
  • 60 Accesses

Abstract

The prerequisite for multicellularity is the effective integration of component cells in the formation and maintenance of complex tissue architectures. As a consequence, metazoan cells require sophisticated molecular machinery with which to communicate with their environment. Over the past decade there have been substantial advances in our understanding of the molecular processes by which cells receive, transduce and generate signals. The molecules that comprise such signal transduction pathways include a bewilderingly diverse set of functions, reflecting the diverse consequences that signals generate in differing cell types. However, one of the most intriguing general findings is that many components of signal transduction pathways can function as oncogenes if their activity becomes deregulated or inappropriately activated: that is, they trigger inappropriate and unrestrained cell proliferation leading to neoplastic transformation. This in turn indicates that cell proliferation is under the control of signalling pathways and, therefore, regulated by the availability of external mitogenic signals. The importance of signal transduction pathways in carcinogenesis has largely driven the recent enormous advances in our understanding of the molecular basis of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann DA (1991) Sequence and expression of a cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines. Oncogene 6:165–167

    PubMed  CAS  Google Scholar 

  • Almendral JM, Sommer D, MacDonald-Bravo H, Burekhardt J, Perera J, Bravo R (1988) Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol Cell Biol 8:2140–2148

    PubMed  CAS  Google Scholar 

  • Amati B, Brooks M, Levy N, Littlewood T, Evan G, Land H (1993) Oncogenic activity of the c-Myc protein requires dimerisation with Max. Cell 72:233–245

    Article  PubMed  CAS  Google Scholar 

  • Amati B, Dalton S, Brooks M, Littlewood T, Evan G, Land H (1992) Transcriptional activation by c-Myc oncoprotein in yeast requires interaction with Max. Nature 359:423–426

    Article  PubMed  CAS  Google Scholar 

  • Amati B, Littlewood T, Evan G, Land H (1994) The c-Myc protein induces cell cycle progression and apoptosis through dimerisation with Max. EMBO J 12:5083–5087

    Google Scholar 

  • Anderson A, Woloschak GE (1992) Cellular proto-oncogene expression following exposure of mice to gamma rays. Radiat Res 130:340–4

    Article  PubMed  CAS  Google Scholar 

  • Andrews GK, Harding MA, Calvet JP, E.D. A (1987) The heat shock response in HeLa cells is accompanied by elevated expression of the c-fos proto-oncogene. Mol Cell Biol 7:452–3458

    Google Scholar 

  • Askew D, Ashmun R, Simmons B, Cleveland J (1991) Constitutive c-myc expression in IL-3-dependent myeloid cell line suppresses cycle arrest and accelerates apoptosis. Oncogene 6:1915–1922

    PubMed  CAS  Google Scholar 

  • Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death in the oligodendrocyte lineage. J Neurobiol 23:1221–30

    Article  PubMed  CAS  Google Scholar 

  • Bennett M, Evan G, Newby A (1993) Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-g, heparin and cyclic nucleotide analogues and induces apoptosis. Circulation 74:525–536

    Google Scholar 

  • Cao K, Koski RA, Gashler A, McKiernan M, Morris CF, Gaffney R, Hay RV, Sukhatme VP (1990) Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol 10:1931–1939

    PubMed  CAS  Google Scholar 

  • Cheung HS, Mitchell PG, Pledger WJ (1989) Induction of expression of c-fos and c-myc protooncogenes by basic calcium phosphate crystal: effect of beta-interferon. Cancer Res 49:134–138

    PubMed  CAS  Google Scholar 

  • Chou J, Roizman B (1992) The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci USA 89:3266–3270

    Article  PubMed  CAS  Google Scholar 

  • Christy BA, Lau LF, Nathans D (1988) A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with ‘zinc finger’ sequences. Proc Natl Acad Sci USA 85:7857–7861

    Article  PubMed  CAS  Google Scholar 

  • Cochran BH, Zullo J, Verma IM, Stiles CD. (1984) Expression of the c-fos gene and of an fos- related gene is stimulated by platelet-derived growth factor. Science 226:1080–1082

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Duke R, Fadok V, KS S (1992) Apoptosis and programmed cell death in immunity. Ann Rev Immunol 10:267–293

    Article  CAS  Google Scholar 

  • Collins MK, Marvel J, Malde P, Lopez-Rivas A (1992) Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J Exp Med 176:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Coppola JA, Cole MD (1986) Constitutive c-myc oncogene expression blocks mouse erythroleukaemia cell differentiation but not commitment. Nature 320:760–763

    Article  PubMed  CAS  Google Scholar 

  • Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE, Campisi J (1986) Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 261:9161–6

    PubMed  CAS  Google Scholar 

  • Denis N, Blanc S, Leibovitch MP, Nicolaiew N, Dautry F, Raymondjean M, Kruh J, Kitzis A (1987) c-myc oncogene expression inhibits the initiation of myogenic differentiation. Exp Cell Res 172:212–217

    Article  PubMed  CAS  Google Scholar 

  • Dmitrovsky E, Kuehl WM, Hollis GF, Kirsch IR, Bender TP, Segal S (1986) Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 322:748–750

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Picard D, Yamamoto KR, Bishop MJ (1989) Chimaeras of Myc oncoprotein and steroidreceptors cause hormone-dependent transformation of cells. Nature 340:66–68

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Schirm S, Bishop JM (1991) The Myc protein activates transcription of the alpha-prothymosin gene. EMBO J 10:133–141

    PubMed  CAS  Google Scholar 

  • Evan G, Littlewood T (1993) The role of c-myc in cell growth. Curr Opin Genet & Dev 3:44–49

    Article  CAS  Google Scholar 

  • Evan G, Wyllie A, Gilbert C, Littlewood T, Land H, Brooks M, Waters C, Penn L, Hancock D (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 63:119–125

    Article  Google Scholar 

  • Fornace JAJ, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9:4196–4203

    PubMed  CAS  Google Scholar 

  • Freytag SO (1988) Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol 8:1614–1624

    PubMed  CAS  Google Scholar 

  • Freytag SO, Dang CV, Lee WMF (1990) Definition of the activities and properties of c-myc required to inhibit cell differentiation. Cell Growth & Diff 1:339–343

    CAS  Google Scholar 

  • Gould SJ (1993) Eight little piggies (Penguin Science Series). Penguin, London

    Google Scholar 

  • Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the c-fos protooncogene. Nature 311:433–438

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DE, Sukhatme VP, Sherman ML, Virudachalam S, Kufe D, Weichselbaum RR (1991) Protein kinase C mediates X-ray inducibility of nuclear signal transducers Egrl and Jun. Proc Natl Acad Sci USA 88:2156–2160

    Article  PubMed  CAS  Google Scholar 

  • Harrington E, Fanidi A, Bennett M, Evan G (1994a) Modulation of Myc-induced apoptosis by specific cytokines. EMBO J 13:3286–3295

    PubMed  CAS  Google Scholar 

  • Harrington E, Fanidi A, Evan, G (1994b) Oncogenes and cell death. Curr Opin Genet Dev 4:120–129

    Article  PubMed  CAS  Google Scholar 

  • Heikkila R, Schwab G, Wickstrom E, Loke SL, Pluznik DH, Watt R, Neckers LM (1987) A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature 328:445–449

    Article  PubMed  CAS  Google Scholar 

  • Hilberg F, Aguzzi A, Howells N, Wagner EF (1993) c-jun is essential for normal mouse development and hepatogenesis. Nature 365:179–181

    Article  PubMed  CAS  Google Scholar 

  • Hogquist KA, Nett MA, Unanue ER, Chaplin DD (1991) Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci USA 88:8485–8489

    Article  PubMed  CAS  Google Scholar 

  • Hunt SP, Pini A, Evan GI (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    Article  PubMed  CAS  Google Scholar 

  • Hurst HC (1994) Transcription factors 1: bZip proteins. Protein Profile. Ed. Sheterline P, Vol 1 Issue 2. Academic Press, London

    Google Scholar 

  • Kastan MB, Zhan Q el DW, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fomace AJ (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  • Kato GJ, Barrett J, Villa GM, Dang CV (1990) An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 10:5914–5920

    PubMed  CAS  Google Scholar 

  • Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610

    Article  PubMed  CAS  Google Scholar 

  • Kobel H, Du Pasquier L (1986) Genetics of polyploid Xenopus. Trends Genet 2:310–315

    Article  Google Scholar 

  • Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90.3516–3520

    Article  PubMed  CAS  Google Scholar 

  • Kretzner L, Blackwood E, Eisenman R (1992) Myc and Max possess distinct transcriptional activities. Nature 359:426–429

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Davidson NE, Isaacs JT (1991) Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51:162–166

    PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Isaacs JT (1990) Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50.3748–3753

    PubMed  CAS  Google Scholar 

  • Lau LF, Nathans D (1985) Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J 4:3145–3151

    PubMed  CAS  Google Scholar 

  • Lin E, Orlofsky A, Berger M, Prystowsky M (1993) Characterization of A1, a novel hemopoietic-specific early-response gene with sequence similarity to bel-2. J Immunol 151:1979–1988

    PubMed  CAS  Google Scholar 

  • Littlewood TD, Evan GI (1994) Transcription factors 2: helix-loop-helix proteins. Protein Profile. Ed. Sheterline P, Vol 1 Issue 6. Academic Press, London

    Google Scholar 

  • Lord KA, Abdollahi A, Hoffman LB, Liebermann DA (1990a) Dissection of the immediate-early response of myeloid leukemia cells to terminal differentiation and growth inhibitory stimuli. Cell Growth Differ 1:637–645

    PubMed  CAS  Google Scholar 

  • Lord KA, Hoffman LB, Liebermann DA (1990b) Complexity of the immediate-early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene 5:387–396

    PubMed  CAS  Google Scholar 

  • Lord KA, Hoffman-Liebermann B, Liebermann DA (1990c) Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5.1095–1097

    PubMed  CAS  Google Scholar 

  • Lord KA, Hoffman-Liebermann B, Liebermann DA (1990d) Sequence of MyD116 cDNA: a novel myeloid differentiation primary response gene induced by IL6. Nucleic Acids Res 18:2823–2828

    Article  PubMed  CAS  Google Scholar 

  • Marita B, Rahmsdorf HJ, Litfin M, Karin M, Herrlich P (1988) Activation of the c-fos gene by UV and phorbol ester: different signal transduction pathways converge to the same enhancer element. Oncogene 3:301–311

    Google Scholar 

  • Mitchell RL, Zokas L, Schreiber RD, Verma IM (1985) Rapid induction of expression of protooncogene fos during human monocyte differentiation. Cell 40:209–217

    Article  PubMed  CAS  Google Scholar 

  • Mohn KL, Laz TM, Hsu JC, Melby AE, Bravo R, Taub R (1991) The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol Cell Biol 11:381–390

    PubMed  CAS  Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1989) Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci 12:459–462

    Article  PubMed  CAS  Google Scholar 

  • Muller R, Bravo R, Burckhardt J, Curran T (1984) Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature (London) 312:716–720

    Article  CAS  Google Scholar 

  • Nambi P, Watt R, Whitman M, Aiyar N, Moore JP, Evan GI, Crooke S (1989) Induction of c-fos protein by activation of vasopressin receptors in smooth muscle cells. Febs Lett 245:61–64

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Wang ZQ, Grigoriadis AE, Wagner EF, von Ruden T (1994) Mice lacking c-fos have normal, hematopoietic stem cells but exhibit altered B-cell differentiation due to an impaired bone marrow environment. Mol Cell Biol 14:382–390

    PubMed  CAS  Google Scholar 

  • Ormerod MG, Collins MK, Rodriguez TG, Robertson D (1992) Apoptosis in interleukin-3-dependent haemopoietic cells. Quantification by two flow cytometric methods. J Immunol Methods 153:57–65

    Article  PubMed  CAS  Google Scholar 

  • Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246:603–608

    Article  PubMed  CAS  Google Scholar 

  • Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Munger K, Howley PM, Moses HL (1990) TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785

    Article  PubMed  CAS  Google Scholar 

  • Rabbitts PH, Watson JV, Lamond A, Forster A, Stinson MA, Evan G, Fischer W, Atherton E, Sheppard R, Rabbitts TH (1985) Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J 4:2009–2015

    PubMed  CAS  Google Scholar 

  • Raff M, Barres B, Burne J, Coles H, Ishizaki Y, Jacobson M (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700

    Article  PubMed  CAS  Google Scholar 

  • Ransone LJ, Visvader J, Wamsley P, Verma IM (1990) Trans-dominant negative mutants of Fos and Jun. Proc Natl Acad Sci USA 87:3806–3810

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez GT, Collins MK, Garcia I, Lopez RA (1992) Insulin-like growth factor-I inhibits apoptosis in IL-3-dependent hemopoietic cells. J Immunol 149:535–540

    Google Scholar 

  • Roussel MF, Cleveland JL, Shurtleff SA, Sherr CJ (1991) Myc rescue of a mutant CSF-1 receptor impaired in mitogenic signalling. Nature 353:361–363

    Article  PubMed  CAS  Google Scholar 

  • Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulse that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S (1992) Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 267:10551–10560

    PubMed  CAS  Google Scholar 

  • Sarma V, Wolf FW, Marks RM, Shows TB, Dixit VM (1992) Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J Immunol 148:3302–3312

    PubMed  CAS  Google Scholar 

  • Seyfert VL, McMahon S, Glenn W, Cao X, Sukhatme VP, Monroe JG (1990) Egr-1 expression in surface Ig-mediated B cell activation. J Immunol 145:3647–3653

    PubMed  CAS  Google Scholar 

  • Smeyne R, Vendrell M, Hayward M, Baker S, Miao G, Schilling K, Robertson L, Curran T, Morgan J (1993) Continuous c-fos expression precedes programmed cell-death in vivo. Nature 363:166–169

    Article  PubMed  CAS  Google Scholar 

  • Spencer CA, Groudine M (1991) Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res 56:1–48

    Article  PubMed  CAS  Google Scholar 

  • Sukhatme VP, Kartha S, Toback FG, Taub R, Hoover RG, Tsai-Morris CH (1987) A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res 1:343–355

    PubMed  CAS  Google Scholar 

  • Tolle T, Schadrack J, Castro-Lopes J, Evan G, Roques B, Zieglgansberger W (1994) Effects of kelatorphan and morphine before and after noxious-stimulation on immediate-early gene-expression in rat spinal-cord neurons. Pain 56:103–112

    Article  PubMed  CAS  Google Scholar 

  • Touchette N (1992) Dying cells reveal new role for cancer genes. J NIH Research 4:48–52

    Google Scholar 

  • Waters C, Hancock D, Evan G (1990) Identification and characterisation of the egr-1 gene product as an inducible, short-lived, nuclear phosphoprotein. Oncogene 5:669–674

    PubMed  CAS  Google Scholar 

  • Waters C, Littlewood T, Hancock D, Moore J, Evan G (1991) c-myc protein expression in untransformed fibroblasts. Oncogene 6:101–109

    Google Scholar 

  • Williams S, Evan GI, Hunt SP (1990a) Spinal c-fos induction by sensory stimulation in neonatal rats. Neurosci Lett 9:309–314

    Article  Google Scholar 

  • Williams S, Evan GI, Hunt SP (1990b) Changing patterns of c-fos induction in spinal neurons following thermal cutaneous stimulation in the rat. Neuroscience 36:73–81

    Article  PubMed  CAS  Google Scholar 

  • Wisden W, Errington M, Williams S, Dunnett S, Waters C, Hancock D, Evan G, Bliss T, Hunt SP (1990) Differential expression of immediate-early genes in the hippocampus and spinal cord. Neuron 4:603–614

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evan, G.I. (1995). Immediate-early genes — how immediate and why early?. In: Tölle, T.R., Schadrack, J., Zieglgänsberger, W. (eds) Immediate-Early Genes in the Central Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79562-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79562-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79564-0

  • Online ISBN: 978-3-642-79562-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics