Advertisement

Neuere Aspekte des vestibulookulären Reflexes

  • A. H. Clarke
Conference paper
Part of the Verhandlungsbericht 1995 der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie book series (VBDG HNO, volume 1995 / 1)

Zusammenfassung

In den 50er und 60er Jahren ermöglichte die Verbreitung objektiver Methoden zur Messung der Augenbewegungen und der Aktivität der peripheren und zentralen Neuronen die intensive Erforschung des vestibulookulären Reflexes. Seit Mitte der siebziger Jahre konnten durch die Untersuchung des vestibulookulomotorischen Systems weitere wesentliche Fortschritte erzielt werden. Nicht zuletzt deshalb zählt es heute zu einem der meist erforschten neurophysiologischen Systeme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Akbarian S, Berndl K, Grüsser OJ, Guldin W, Pause M, Schreiter U (1988) Response of single neurons in the parie-toinsular vestibular cortex of primates. Ann NY Acad Sci Vol 545:187–202CrossRefGoogle Scholar
  2. [2]
    Allum JHJ, Graf W, Dichgans J, Schmidt CL (1976) Visual-vestibular interactions in the vestibular nuclei of the goldfish. Exp Brain Res 26:463–486PubMedCrossRefGoogle Scholar
  3. [3]
    Angelaki DE (1992) Two-dimensional coding of linear acceleration and the angular velocity sensitivity of the otolith system. Biol Cybern 67:523–533PubMedCrossRefGoogle Scholar
  4. [4]
    Arai Y, Suzuki JI, Hess BJM, Henn V (1990) Caloric nystagmus in three dimensions under otolithic control in rhesus monkeys. ORL 52:218–225PubMedCrossRefGoogle Scholar
  5. [5]
    Azzena GB, Azzena MT, Marini R (1974) Optokinetic nystagmus and the vestibular nuclei. Exp Neurol 42:158–168PubMedCrossRefGoogle Scholar
  6. [6]
    Baker R, Berthoz A (1974) Organization of vestibular nystagmus in oblique oculomotor system. J Neurophysiol 37:195–217PubMedGoogle Scholar
  7. [7]
    Baker R, Goldberg J, Hermann G, Peterson B (1984) Spati-cal and temporal response properties of secondary neurons that receive convergent input in vestibular nuclei of alert cats. Brain Res 294:138–143PubMedCrossRefGoogle Scholar
  8. [8]
    Baloh RW, Lyerly K, Yee RD, Honrubia V (1984) Voluntary control of the human vestibuloocular reflex. Acta Otolaryngol (Stockh) 97:1–6CrossRefGoogle Scholar
  9. [9]
    Baloh RW, Beykirch K, Honrubia V, Yee RD (1988) Eye movements induced by linear acceleration on a parallel swing. J Neurophysiol 60:200Google Scholar
  10. [10]
    Baloh RW, Honrubia V (1990) The central vestibular system. Ch. 3. In: Baloh RW, Honrubia V (eds) Clincial neurophysiology of the vestibular system. Davis, PhiladelphiaGoogle Scholar
  11. [11]
    Bárány R (1907) Physiologie und Pathologie des Bogengangsapparates beim Menschen. Deuticke, WienGoogle Scholar
  12. [12]
    Barmack NH (1987) The influence of gravity on horizontal and vertical vestibulo-ocular and optokinetic reflexes in the rabbit. Brain Res 424:89–98PubMedCrossRefGoogle Scholar
  13. [13]
    Barnes GR, Benson AJ (1973) A model for the prediction of the nystagmic response to angular and linear acceleration stimuli. Agard Document 128/A23:1–13Google Scholar
  14. [14]
    Barr CC, Schultheis LW, Robinson DA (1976) Voluntary, non-visual control of the human vestibulo-ocular reflex. Acta Otolaryngol (Stockh) 81:365–375Google Scholar
  15. [15]
    Baumgarten D, Reker U (1981) Die Non-Coplanarität der horizontalen Bogengänge und ihre Aufwirkung auf die experimentelle Vestibularisprüfung. Arch Otorhinolaryngol 232:73–80PubMedCrossRefGoogle Scholar
  16. [16]
    Bechterew W V (1883) Ergebnisse der Durchschneidung des N. acusticus, nebst Erörterung der Bedeutung der semicir-culären Kanäle für das Körpergleichgewicht. Pflügers Arch 30:312–347CrossRefGoogle Scholar
  17. [17]
    Benson AJ (1974) Modification of the response to angular accelerations by linear accelerations. In: Kornhuber HH (ed) Handbook of sensory physiology, Vol IV/2: Vestibular System. Springer, Berlin Heidelberg New York, pp 281–320Google Scholar
  18. [18]
    Benson AJ (1984) Motion Sickness. In: Dix MR, Hood JD (eds) Vertigo. Wiley, London New York, pp 391–426Google Scholar
  19. [19]
    Benson AJ, Guedry FE, Melvill Jones G (1970) Response of semicircular canal dependent units in vestibular nuclei to rotation of linear acceleration vector without angular acceleration. J Physiol 210:475–494PubMedGoogle Scholar
  20. [20]
    Benson AJ, Spencer BA, Scott, JRR (1986) Thresholds for the detection of the direction of whole body, linear movement in the horizontal plane. Aviat Space Env Med 11: 1088–1096Google Scholar
  21. [21]
    Bergstedt M (1961) The effect of gravitational force on the vestibular caloric test. Acta Otolaryngol (Stockh) 53:551–562CrossRefGoogle Scholar
  22. [22]
    Berthoz A, Melvill Jones G, Bégué AE (1981) Differential visual adaptation of vertical canal-dependent vestibulo-ocular reflexes. Exp Brain Res 44:19–26PubMedCrossRefGoogle Scholar
  23. [23]
    Berthoz A (1988) The role of gaze in compensation of vestibular dysfunction: the gaze substitution hypothesis. Prog Brain Res 76:411–420PubMedCrossRefGoogle Scholar
  24. [24]
    Berthoz A, Brandt T, Dichgans J, Probst T, Bruzek W, Viévielle T (1986) European vestibular experiments on the Spacelab-1 mission: 5. Contribution of the otoliths to the vertical vestibulo-ocular reflex. Exp Brain Res 64:272–278PubMedCrossRefGoogle Scholar
  25. [25]
    Berthoz A, Israel I, Vitte E, Zee DS (1988) Linear displacement can be derived from otolithic information and stored on spatial maps controlling the saccadic system. Adv ORL 41:76–81Google Scholar
  26. [26]
    Black FO, Shupert CL, Peterka RJ, Nashner LM (1989) Effects of unilateral loss of vestibular function on the VOR and postural control. Ann Otol Rhinol Laryngol 98:884–889PubMedGoogle Scholar
  27. [27]
    Blanks RHI, Estes MS, Markham CH (1974) Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J Neurophysiol 38:1250–1268Google Scholar
  28. [28]
    Blanks RHI, Curthoys IS, Markham CH (1975) Planar relationships of the semicircular canals in man. Acta Otolaryngol (Stockh) 80:156–196CrossRefGoogle Scholar
  29. [29]
    Blanks RHI, Anderson JH, Precht W (1978) Response characteristics of semicircular canal and otolith systems in the cat. II. Response of trochlear motoneurons. Exp Brain Res 25:369–390Google Scholar
  30. [30]
    Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25:369–390PubMedCrossRefGoogle Scholar
  31. [31]
    Bles W, de Graaf B (1991) Ocular rotation and perception of the horizontal and static tilt conditions in patients without labyrinthine function. Acta Otolaryngol (Stockh) 111/3: 456–462CrossRefGoogle Scholar
  32. [32]
    Bloomberg J, Melvill Jones G, Segal B (1991) Adaptive plasticity in the gaze stabilizing synergy of slow and saccadic eye movements. Exp Brain Res 84:35–46PubMedGoogle Scholar
  33. [33]
    Böhmer A, Straumann D, Kawachi N, Arai Y, Henri V (1992) Three dimensional analysis of caloric nystagmus in rhesus monkeys. Acta Otolaryngol (Stockh) 112:916–926CrossRefGoogle Scholar
  34. [34]
    Brandt T, Büchele W, Arnold F (1977) Arthrokinetic nystagmus and ego-motion sensation. Exp Brain Res 30:331–338PubMedCrossRefGoogle Scholar
  35. [35]
    Brandt T, Dieterich M (1987) Pathological eye-head coordination in roll: tonic ocular tilt reaction in mesencephalic and medullary lesions. Brain 110:649–666PubMedCrossRefGoogle Scholar
  36. [36]
    Brandt T, Dieterich M (1992) Cyclorotation of the eyes and subjective visual vertical in vestibular brain stem lesions. Ann NY Acad Sci 656:537–549PubMedCrossRefGoogle Scholar
  37. [37]
    Breuer J (1874) Über die Funktion der Bogengänge des Ohrlabyrinthes. Wien Med Jahrb 4:72 ffGoogle Scholar
  38. [38]
    Brodal A (1974) Anatomy of the vestibular nuclei and their connections. In: Kornhuber HH (Hrsg) Hdbk of sensory physiology, Vol. VI/1. Springer, Berlin Heidelberg New York, pp 239–252Google Scholar
  39. [39]
    Brodal A, Hoivik B (1964) Site and mode of termination of primary vestibulocerebellar fibers in the cat. Arch Ital Biol 102:1–21PubMedGoogle Scholar
  40. [40]
    Buddenbrock W von (1915) Die Statocyste von Pecten, ihre Histologie und Physiologe. Zool Jahrb Physiol 35:301–356Google Scholar
  41. [41]
    Budelmann BU (1979) Hair cell polarization in the gravity receptor systems of the statocysts of the cephalopods. Brain Res 160:261–270PubMedCrossRefGoogle Scholar
  42. [42]
    Budelmann BU, Young JZ (1984) The statocyst-oculomotor system of octopus vulgaris: Extraocular eye muscles, eye muscle nerves, statocyst nerves and the oculomotor centre in the central nervous system. Phil Trans R Soc Lond 306:159–189CrossRefGoogle Scholar
  43. [43]
    Budelmann BU, Young JZ (1985) Central pathways of the nerves of the arms and mantle of octopus. Phil Trans R Soc Lond 310:109–122CrossRefGoogle Scholar
  44. [44]
    Buizza A, Leger A, Droulez J, Berhoz A, Schmid R (1980) Influence of otolithic stimulation by horizontal linear acceleration on optokinetic nystagmus and visual motor perception. Exp Brain Res 39:165–176PubMedCrossRefGoogle Scholar
  45. [45]
    Büttner U, Henn V (1976) Thalamic unit activity in the alert monkey during natural vestibular stimulation. Brain Res 103:127–132PubMedCrossRefGoogle Scholar
  46. [46]
    Büttner U, Buettner UW (1978) Parietal Cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Res 153:392–397PubMedCrossRefGoogle Scholar
  47. [47]
    Büttner U, Büttner-Ennever JA (1988) Present concepts of oculomotor organization. In: Büttner-Ennever J (ed) Neuroanatomy of the oculomotor system. Elsevier, AmsterdamGoogle Scholar
  48. [48]
    Büttner-Ennever JA (1992) Patterns of connectivity in the vestibular nuclei. Ann NY Acad Sci 656:363–378PubMedCrossRefGoogle Scholar
  49. [49]
    Büttner-Ennever JA, Büttner U (1988) The reticular formation. In: Büttner-Ennever JA (Hrsg) Neuroanatomy of the oculomotor system. Reviews of oculomotor research, Vol 2. Elsevier, Amsterdam New York Oxford, pp 119–202Google Scholar
  50. [50]
    Cannon SC, Robinson DA (1985) Neural integrator failure from brain stem lesions in monkey. Invest Ophthal Vis Sci 26[Suppl 3]:57Google Scholar
  51. [51]
    Carlstrom D, Engström H, Hjorth S (1953) Electron microscope and x-ray diffraction studies of otoconia. Laryngoscope 63:1052–1057PubMedCrossRefGoogle Scholar
  52. [52]
    Chang HT, Wu CP (1959) Optic activation of cerebellar and vestibular neurons in the toad. Sci Rec (Peking) 3:640–644Google Scholar
  53. [53]
    Chan YS, Cheung YM (1990) Response of otolith-related neurons in bilateral vestibular nucleus of acute hemilaby-rinthectomized cats to off-vertical axis rotations. Ann NY Acad Sci 656:755–765CrossRefGoogle Scholar
  54. [54]
    Clarke AH, Scherer H, Gundlach P (1988) Caloric Stimulation during short episodes of microgravity. Arch Otorhi-nolaryngol 245:175–179CrossRefGoogle Scholar
  55. [55]
    Clarke AH, Scherer H, Schleibinger J (1988) Body position and caloric nystagmus. Acta Otolaryngol (Stockh) 106:339–347CrossRefGoogle Scholar
  56. [56]
    Clarke AH, Teiwes W. Scherer H (1989) Vestibular nystagmus during altered g-conditions. ESA/ESTEC Working Paper 1530:83–90Google Scholar
  57. [57]
    Clarke AH, Teiwes W, Scherer H (1990) Measurement of eye movement in space-related environments. Proc 45h Life Sciences Symposium, ESA SP-307:93–94Google Scholar
  58. [58]
    Clarke AH, Teiwes W, Scherer H (1991) Videooculography — an alternative method for measurement of three-dimensional eye movements. In: Schmidt R, Zambarbieri D (eds) Oculomotor control and cognitive processes. Elsevier, Amsterdam, pp 431–443Google Scholar
  59. [59]
    Clarke AH, Teiwes W, Scherer H (1991) A compact equipment package for vestibular experiments during spaceflight. Acta Astronautica 23:307–309PubMedCrossRefGoogle Scholar
  60. [60]
    Clarke AH, Teiwes W, Scherer H (1992) Variation of gravi-tointernal force and its influence on ocular torsion and caloric nystagmus. Ann NY Acad Sci 656:820–822PubMedCrossRefGoogle Scholar
  61. [61]
    Clarke AH, Teiwes W, Scherer H (1993) Evaulation of the torsional VOR in weightlessness. J Vest Res 3/3:207–218Google Scholar
  62. [62]
    Clarke AH, Teiwes W, Oelhafen P, Scherer H (1993) Three-dimensional aspects of caloric nystagmus in humans: II. The influence of increased gravitoinertial force. Acta Otolaryngol (Stockh) 113:687–692CrossRefGoogle Scholar
  63. [63]
    Clarke AH, Waltmann K, Scherer H (1993) Three-dimensional aspects of caloric nystagmus in humans: II. Caloric-Induced torsional deviation. Acta Otolaryngol (Stockh) 113:693–698CrossRefGoogle Scholar
  64. [64]
    Clement G, Viévielle T, Lestienne F, Berthoz A (1986) Modifications of gain asymmetry and beating field of vertical optokinetic nystagmus in microgravity. Neurosci Letters 63:271–274CrossRefGoogle Scholar
  65. [65]
    Cohen B, (1974) The vestibulo-ocular reflex arc. In: Kornhuber HH (ed) Handbook of sensory physiology. Vestibular system. Springer, Berlin Heidelberg New York, pp 477–540Google Scholar
  66. [66]
    Cohen B, (1988) Representation of three-dimensional space in the vestibular, oculomotor, and visual systems. Concluding remarks. Ann NY Acad Sci 545:239–248PubMedCrossRefGoogle Scholar
  67. [67]
    Cohen B, Suzuki JI (1963) Eye movements induced by ampullary nerve stimulation. Am J Physiol 204:347–351PubMedGoogle Scholar
  68. [68]
    Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after nystagmus. J Physiol 270:321–344PubMedGoogle Scholar
  69. [69]
    Cohen B, Suzuki JI, Raphan T (1983) Role of the otolith organs in generation of horizontal nystagmus: Effects of selective labyrinthine lesions. Brain Res 276:159–164PubMedCrossRefGoogle Scholar
  70. [70]
    Collewijn H (1989) The vestibulo-ocular reflex: an outdated concept? Prog Brain Res 80:197–209PubMedCrossRefGoogle Scholar
  71. [71]
    Collewijn H, Steen J van der, Ferman L, Jansen TC (1985) Human ocular counterroll: assessment of static and dynamic properties from scleral coil recordings. Exp Brain Res 59:185–196PubMedCrossRefGoogle Scholar
  72. [72]
    Corey DP, Assad JA (1992) Transduction and adaptation in vertebrate hair cells: Correlating structure with function. In: Corey DP, Roper D (eds) Sensory Transduction. Rockefeller University Press, pp 325–352Google Scholar
  73. [73]
    Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a verttebrate hair cell. Nature 281:675–677PubMedCrossRefGoogle Scholar
  74. [74]
    Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular haircells. J Neurosc 3:962–976Google Scholar
  75. [75]
    Correia MJ (1992) Filtering properties of hair cells. Ann NY Acad Sci 656:49–57PubMedCrossRefGoogle Scholar
  76. [76]
    Correia MJ, Guedry FE (1966) Modification of Vestibular Responses as a function of rate of rotation about an earth-horizontal axis acta Otolaryngol (Stockh) 62: 298–308Google Scholar
  77. [77]
    Correia MJ, Christensen BN, Moore LE, Lang DG (1989) Studies of solitary semicircular canal hair cells in the adult pigeon. I. Frequency and time domain analysis of active and passive membrane properties. J Neurophysiol 62:924–934PubMedGoogle Scholar
  78. [78]
    Carwford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434Google Scholar
  79. [79]
    Crawford JD, Cadera W, Vilis T (1991) Generation of torsional and vertical eye position signals by interstitial nucleus of Cajal. Science 252:1551–1553PubMedCrossRefGoogle Scholar
  80. [80]
    Crum-Brown A (1873/4) On the sense of rotation and the anatomy and physiology of the semicircular canals of the internal ear. J Anat (London) 8:327–331Google Scholar
  81. [81]
    Curthoys IS (1982) The response of primary horizontal semicircular canal neurons in the rat and guinea pig to angular acceleration. Exp Brain Res 47:286–294PubMedGoogle Scholar
  82. [82]
    Curthoys IS (1987) Eye movements produced by utricular and saccular stimulation physiological adaption of man in space. Aviat Space Environ Med 58[Suppl 9]:A192–A197PubMedGoogle Scholar
  83. [83]
    Curthoys IS, Blanks RHI, Markham CH (1977) Semicircular canal functional anatomy in cat, guinea pig and man. Acta Otolaryngol (Stockh) 83:258–265CrossRefGoogle Scholar
  84. [84]
    Curthoys IS, Markham CH (1971) Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. I. Natural Stimulation. Brain Res 35:469–490PubMedCrossRefGoogle Scholar
  85. [85]
    Curthoys IS, Curthoys EJ, Blanks RHI, Markham CH (1975) The orientation of the semicircular canals in the guinea pig. Acta Otolaryngol (Stockh) 80:197–205CrossRefGoogle Scholar
  86. [86]
    Curthoys IS, Blanks RHI, Markham CH (1977) Semicircular canal functional anatomy in cat, guinea pig and man. Acta Otolaryngol (Stockh) 83:258–265CrossRefGoogle Scholar
  87. [87]
    Curthoys IS, Oman CM (1986) Dimensions of the horizontal semicircular duct, ampulla and utricle in rat und guinea pig. Acta Otolaryngol (Stockh) 101:1–10CrossRefGoogle Scholar
  88. [88]
    Curthoys IS, Dai MJ, Halmagy GM (1991) Human ocular torsional position before and after unilateral vestibular neurectomy. Exp Brain Res 85:218–225PubMedCrossRefGoogle Scholar
  89. [89]
    Curthoys IS, Halmagyi GM (im Druck) Vestibular compensation: a review of the oculomotor neural and clinical consequences of unilateral vestibular lossGoogle Scholar
  90. [90]
    Darlot C, Cohen B, Berthoz A, Denise P (1987) Eye movements and perceptual effects induced by off-vertical axis rotation at small angles of tilt. In: Graham MD, Kemink JL (eds) The vestibular system: Neurophysiologic and clinical research. Raven, New York, pp 271–280Google Scholar
  91. [91]
    Davis H (1965) A model for transducer action in the cochlea. Cold Spring Harbor Symp Quant Biol 30:181PubMedGoogle Scholar
  92. [92]
    Dawkins R (1986) The blind watchmaker. Longman, LondonGoogle Scholar
  93. [93]
    Dechesne C, Sans A (1980) Control of the vestibular nerve activity by the efferent system in the cat. Acta Otolaryngol (Stockh) 90:82–85CrossRefGoogle Scholar
  94. [94]
    de Waele C, Mülethaler M, Vidal PP (im Druck) Neuroche-mistry of central vestibular pathways: a review. Brain Res RevGoogle Scholar
  95. [95]
    Diamond SG, Markham CH, Simpson NE, Curthoys IS (1979) Binocular counterrolling in humans during dynamic rotation. Arch Otolaryngol 87:490–498CrossRefGoogle Scholar
  96. [96]
    Diamond SG, Markham CH (1983) Ocular counterrolling as an indicator of vestibular function. Neurology 33:1460–1469PubMedGoogle Scholar
  97. [97]
    Dichgans J, Schmidt CL, Wist ER (1972) Frequency modulation of afferentand efferent unit activity in the vestibular nerve by oculomotor impulses. Prog Brain Res 37:449–456PubMedCrossRefGoogle Scholar
  98. [98]
    Dichgans J, Schmidt CL, Graf W (1973) Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp Brain Res 18:319PubMedGoogle Scholar
  99. [99]
    Dichgans J, Brandt T (1978) Visual-vestibular interaction: Effects on self-motion perception and postural control. In: Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology, Vol VIII. Springer, Berlin Heidelberg New York, pp 756–804Google Scholar
  100. [100]
    Dieterich M (1992) Funktionelle Hirnstamm-Diagnostik: Vestibuläre Läsionen mit Störungen der Augen-Kopf-Position in der Rollebene. Habilitationsschrift, LMU MünchenGoogle Scholar
  101. [101]
    DiZio P, Lackner J (1988) The effects of gravitoinertial force level and head movements on postrotatory nystagmus and illusions after rotation. Exp Brain Res 70:485–495PubMedCrossRefGoogle Scholar
  102. [102]
    DiZio P, Lackner J (1992) Influence of gravitoinertial force level on vestibular and visual velocity storage in yaw and pitch. Vision Res 32/1:111–120CrossRefGoogle Scholar
  103. [103]
    Dohlman GF (1935) Some practical and theoretical points of labyrinthology. Proc Roy Soc Med 28:1371PubMedGoogle Scholar
  104. [104]
    Dohlmann GF (1981) Critical review of the concept of cupula function. Arch Otolaryngol 376 [Suppl]:1–30Google Scholar
  105. [105]
    Duensing F, Schaefer KP (1959) Über die Konvergenz laby-rinthärer Afferenzen und einzelne Neurone des Vestibularis Kerngebietes. Arch Psychiatr Nervenkr 198:225–252CrossRefGoogle Scholar
  106. [106]
    Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog sacculus. J Neurosci 7:2821–2836PubMedGoogle Scholar
  107. [107]
    Eatock RA, Hutzler MJ (1992) Ionic currents of mamma-Han vestibular hair cells. Ann NY Acad Sci 656:58–74PubMedCrossRefGoogle Scholar
  108. [108]
    Estes MS, Blanks RHI, Markham CH (1974) Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1232–1249Google Scholar
  109. [109]
    Ezure K, Graf W (1984) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral-and front-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93PubMedCrossRefGoogle Scholar
  110. [110]
    Faugier-Grimaud S, Ventre J (1989) iAntomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibuloocular function in a monkey (macaca fascicularis). J Comp Neurol 280:1–14PubMedCrossRefGoogle Scholar
  111. [111]
    Feldmann H, Hüttenbrink KB, Delank KW (1991) Transport of heat in caloric vestibular stimulation. Conduction, Convection or Radiation? Acta Otolaryngol (Stockh) 111:169–175CrossRefGoogle Scholar
  112. [112]
    Ferman L, Colleijn H, Jansen TC, Berg AV van den (1987) Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a tree-dimensional scleral induction coil technique. Vision Res 27:811–828PubMedCrossRefGoogle Scholar
  113. [113]
    Fernández C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661PubMedGoogle Scholar
  114. [114]
    Fernández C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey I. Response to static tilts and to long-during centrifugal force. J Neurophysiol 39:970–984PubMedGoogle Scholar
  115. [115]
    Fernández C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey II. Directional sensitivity and force-to-response relations. J Neurophysiol 39:985–995PubMedGoogle Scholar
  116. [116]
    Fernández C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey III. Response dynamics. J Neurophysiol 39:996–1021PubMedGoogle Scholar
  117. [117]
    Fetter M, Hain TC, Zee DS (1986) Influence of eye and head position on the vestibulo-ocular reflex. Exp Brain Res 64:208–216PubMedCrossRefGoogle Scholar
  118. [118]
    Fettiplace R, Crawford AC, Evans MG (1992) The hair cell’s mechanoelectrical transducer channel. Ann NY Acad Sci 656:1–11PubMedCrossRefGoogle Scholar
  119. [119]
    Fick A (1854) Die Bewegungen des menschlichen Augapfels. Z Ratio Med 4:101–128Google Scholar
  120. [120]
    Fischer MHZ (1927) Messende Untersuchungen über die Gegenrollung der Augen und die Lokalisation der scheinbaren Vertikalen. Graefes Arch Ophthalmol Clin Exp 118:633–680Google Scholar
  121. [121]
    Flock A, Flock B, Ulfendahl M (1986) Mechanisms of movement in outer hair cells and a possible structural basis. Arch Otolaryngol 243:83Google Scholar
  122. [122]
    Flohr H, Abeln W, Lüneburg U (1985) Neurotransmitter and neuromodulator systems involved in vestibular compensation. Rev Oculomot Res 1:269–277PubMedGoogle Scholar
  123. [123]
    Flourens P (1826) Experiences sur les canaux semi-circulaires de l’oreille, dans le mammifères. Mem Acad R Sci Inst France 9:467–477Google Scholar
  124. [124]
    Fluur E, Mellström A (1971) The otolith organs and their influence on oculomotor movements. Exp Neurol 30:139–147PubMedCrossRefGoogle Scholar
  125. [125]
    Fredrickson JM, Figge U, Scheid P, Kornhuber HH (1966) Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp Brain Res 2:318–327PubMedCrossRefGoogle Scholar
  126. [126]
    Friberg L, Skyhoj T, Pauson OB, Lassen NA (1981) Cortical activation during vestibular stimulation and rCBF measurement. J Cereb Blood Flow Metab 1:473–474Google Scholar
  127. [127]
    Friberg L, Olsen TS, Roland PE, Pauson OB, Lassen NA (1985) Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation. Brain 108:609–623PubMedCrossRefGoogle Scholar
  128. [128]
    Fukushima K, Kaneko CRS, Fuchs AF (1992) The neuronal substrate of integration in the oculomotor system. Prog Neurobiol 39:609–639PubMedCrossRefGoogle Scholar
  129. [129]
    Furman J, Baloh RW (1992) Otolith-ocular testing in human subjects. Ann NY Acad Sci 655:431–451CrossRefGoogle Scholar
  130. [130]
    Furman J, Schor R, Kammerer D (1993) Off-vertical axis roational responses in patients with unilateral peripheral vestibular lesions. Ann Otol Rhinol Laryngol 102:137–144PubMedGoogle Scholar
  131. [131]
    Furness DN, Hackney CM (1985) Cross-links between sterocilia in the guinea pig cochlea. Hearing Res 18:177–188CrossRefGoogle Scholar
  132. [132]
    Furst EJ, Goldberg J, Jenkins A (1987) Voluntary modification of the rotatory induced vestibulo-ocular reflex by fixating imaginary targets. Acta Otolaryngol (Stockh) 103:232–240Google Scholar
  133. [133]
    Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30:1377–1403PubMedGoogle Scholar
  134. [134]
    Gacek RR (1982) The anatomical-physiological basis for vestibular function. In: Honrubia V, Barzier MAB (eds) Nystagmus and vertigo. Academic Press, New York LondonGoogle Scholar
  135. [135]
    Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol (Stockh) 77, 92–101CrossRefGoogle Scholar
  136. [136]
    Gauthier GM, Robinson DA (1975) Adaptation of humans’ vestibuloocular reflex to magnifying lenses. Brain Res 92:331–335PubMedCrossRefGoogle Scholar
  137. [137]
    Glasauer S (1992) Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Ann NY Acad Sci 656:847–849PubMedCrossRefGoogle Scholar
  138. [138]
    Gleisner LL, Henriksson NG (1964) Efferent and afferent activity pattern in the vestibular nerve of the frog. Acta Otolaryngol (Stockh) 58[Suppl 192]:90–103CrossRefGoogle Scholar
  139. [139]
    Goldberg JM (1981) Thick and thin mammalian vestibular axons: Afferent and efferent reponse characteristics. In: Gualtierotti T (ed) The vestibular system: Function and morphology. Springer, Berlin Heidelberg New York, pp 187–205CrossRefGoogle Scholar
  140. [140]
    Goldberg JM, Lysakowski A, Fernandez C (1992) Structure and function of vestibular nerve fibers in the chinchilla and squirrel monkey. Ann NY Acad Sci 656:92–107PubMedCrossRefGoogle Scholar
  141. [141]
    Goldberg JM, Fernández C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I Resting discharge and response to constant angular accelerations. J Neurophysiol 34:645–660Google Scholar
  142. [142]
    Goldberg JM, Fernández C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III Variation among units in their discharge properties. J Neurophysiol 34:676–690PubMedGoogle Scholar
  143. [143]
    Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: Anatomical location and influence on afferent activity. J Neurophysiol 43:986PubMedGoogle Scholar
  144. [144]
    Goldberg JM, Fernández C (1982) Eye movements and vestibular nerve responses produced in squirrel monkey by rotations about an earth-horizontal axis. Exp Brain Res 98:551–555Google Scholar
  145. [145]
    Goltz F (1870) Über die physiologische Bedeutung der Bogengänge des Ohrlabyrinthes. Pflügers Arch 3:172–192CrossRefGoogle Scholar
  146. [146]
    Gonshor A, Melvill Jones G (1971) Plasticity in the adult human vestibulo-ocular reflex arc. Proc Can Fed Biol Soc 14:11Google Scholar
  147. [147]
    Gonshor A, Melvill Jones G (1976) Short-term adaptive changes in the human vestibulo-ocular reflex arc. J Physiol 256:361–379PubMedGoogle Scholar
  148. [148]
    Graf W (1988) Motion detection in physical space and its peripheral and central representation. Representation of three-dimensional space in the vestibular, oculomotor and visual systems. Ann NY Acad Sci 545:145–169CrossRefGoogle Scholar
  149. [149]
    Graf W, Ezure K (1986) Morphology of vertical canal related second order vestibular neurons in the cat. Exp Brain Res 63:35PubMedCrossRefGoogle Scholar
  150. [150]
    Grant JW, Best WA (1987) Otolith-organ mechanics: lumped parameter model and dynamic response. Aviat Space Environ Med 58:970–976PubMedGoogle Scholar
  151. [151]
    Grant JW, Cotton JR (1991) A model for otolith dynamic response with a viscoelastic gel layer. J Vest Res 1:139–151Google Scholar
  152. [152]
    Gray O (1955) A brief sSurvey of the phylogenesis of the labyrinth. J Larnygol Otol 69:151–179Google Scholar
  153. [153]
    Graybiel A, Woellner RC (1959) A new and objective method for measuring ocular torsion. Am J Ophthalmol 47: 349–352PubMedGoogle Scholar
  154. [154]
    Graybiel A, Hartwieg EA (1974) Some afferent connections of the oculomotor complex in the cat. Brain Res 81:543–551PubMedCrossRefGoogle Scholar
  155. [155]
    Graybiel A, O’Donnel RD, Fluur E, Nagaba M, Smith J (1980) Mechanisms underlying modulations of thermal nystagmic responses in parabolic flight. Acta Otolaryngol (Stockh) 378 [Suppl] 3–16Google Scholar
  156. [156]
    Gresty M, Barrat H, Bronstein A, Page N (1986) Clinical aspects of otolith-oculomotor relationships. Adaptive processes in visual and oculomotor systems. Oxford, pp 357–366Google Scholar
  157. [157]
    Gresty M, Bronstein A, Brandt T, Dieterich M (1992) Neurology of otolith function. Brain 115:647–673PubMedCrossRefGoogle Scholar
  158. [158]
    Grüsser OJ, Grüsser-Cornehls U (1972) Interaction of vestibular and visual inputs in the visual system. Prog Brain Res 37:573–583PubMedCrossRefGoogle Scholar
  159. [159]
    Grüsser OJ, Pause M, Schreiter U (1982) Neuronal responses in the parietoinsular vestibular cortex of alert Java monkeys (macaca fascicularis). In: Roucoux A, Cromme-linck M (eds) Physiological and pathological aspects of eye movements. Junk, The HagueGoogle Scholar
  160. [160]
    Guedry FE (1963) Orientation of the rotation-axis relative to gravity: Its influence on nystagmus and the sensation of rotation. Acta Otolaryngol (Stockh) 60:30–48CrossRefGoogle Scholar
  161. [161]
    Guldin WO, Grüsser OJ (1987) Single unit responses in the vestibular cortex of squirrel monkeys. Neurosci [Abstr] 13:1224Google Scholar
  162. [162]
    Hain TC, Buettner UE (1990) Static roll and the vestibulo-ocular reflex (VOR). Exp Brain Res 82:463–471PubMedCrossRefGoogle Scholar
  163. [163]
    Halmagyi GM, Curthoys IS (1988) A clinical sign of canal paresis. Arch Neurol 45:737–739PubMedCrossRefGoogle Scholar
  164. [164]
    Halmagyi GM, Curthoys IS, Dai MJ (1993) The effects of unilateral vestibular deafferentation on human otolith function. In Sharpe JA, Barber HO (eds) The vestibulo-ocular reflex and vertigo. Raven, New YorkGoogle Scholar
  165. [165]
    Hamann KF, Lannou J (1988) Dynamic characteristics of vestibular nuclear neurons responses to vestibular and optokinetic stimulation during vestibular compensation in the rat. Acta Otolaryngol (Stockh) 455 [Suppl]:1–9CrossRefGoogle Scholar
  166. [166]
    Hardy M (1934) Observations on the innervation of the macula saculi in man. Anat Rec 59:403–478CrossRefGoogle Scholar
  167. [167]
    Harris LR (1986) The effect of opposing and otolith signals during off-vertical-axis rotation in the cat. J Physiol 371:30pGoogle Scholar
  168. [168]
    Harris LR, Barnes GH (1987) The orientation of vestibular nystagmus is modified by head tilt. In: Kemink JL, Graham MD (eds) The vestibular system. Raven, New YorkGoogle Scholar
  169. [169]
    Harris LR, Stelling JW (1991) The effect of canal/visual and canal/otolith conflict on typ I vestibular nucleus neurons. Acta Otolaryngol (Stockh) 481 [Suppl]:266–268CrossRefGoogle Scholar
  170. [170]
    Hartmann R, Klinke R (1980) Efferent activity in the goldfish vestibular nerve and its infuence on afferent activity. Pflügers Arch 388:123–128PubMedCrossRefGoogle Scholar
  171. [171]
    Haustein W (1989) Considerations on listing’s law and the primary position by means of a matrix desciption of eye position control. Biol Cybern 60:411–420PubMedCrossRefGoogle Scholar
  172. [172]
    Helmholtz H von (1866) Handbuch der physiologischen Optik. Voss, HamburgGoogle Scholar
  173. [173]
    Henn V (1988) Representation of three-dimensional space in vestibular, oculomotor and visual systems. An introduction. Ann NY Acad Sci 545:1–9PubMedCrossRefGoogle Scholar
  174. [174]
    Henn V, Young LR, Finley C (1974) Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Res 71:144–149PubMedCrossRefGoogle Scholar
  175. [175]
    Hepp K, Henn V, Vilis T, Cohen B (1989) Brainstem regions related to saccade generation. In: Wurtz RH, Goldberg ME (eds) The neurobiology of saccadic eye movements. Elsevier, Amsterdam, 105–212Google Scholar
  176. [176]
    Hess BJM (1992) How does the otolith system detect three-dimensional head angular velocity. Ann NY Acad Sci 656:850–853PubMedCrossRefGoogle Scholar
  177. [177]
    Hess BJM, Dieringer N (1991) Spatial organisation of linear vestibuloocular reflexes of the rat: Responses during horizontal and vertical linear acceleration. J Neurophysiol 66: 1805–1818PubMedGoogle Scholar
  178. [178]
    Hillman DE (1976) Vestibular and lateral line system: Morphology of peripheral and central system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York Tokyo, pp 452–479CrossRefGoogle Scholar
  179. [179]
    Hixson WC, Niven JI, Correia MJ (1966) Kinematics nomenclature for physiological accelerations: With special reference to vestibular applications. Monograph 14. Nav Aero Med Instit, Pensacola/FLGoogle Scholar
  180. [180]
    Hoagland H (1932) Impulses from sensory nerves of catfish. Proc. Natl Acad Sci USA 18:701PubMedCrossRefGoogle Scholar
  181. [181]
    Hobson A, Scheibel AB (1977) The brainstem core: Senso-rimoor integration and behavioral state control. Neurosc Res Prog Bull 18:1Google Scholar
  182. [182]
    Holst E von (1950) Die Arbeitsweise des Statolithenappara-tes bei Fischen. Z. Vergi Physiol 32:60–120CrossRefGoogle Scholar
  183. [183]
    Honrubia V, Koehn WW, Jenkins HA, Fenton WH (1982) Effect of bilateral ablation of the vestibular cerebellum on visual vestibular interaction. Exp Neurol 75:616–626PubMedCrossRefGoogle Scholar
  184. [184]
    Honrubia V, Hoffman LF, Sitko S, Schwarz I (1989) Anatomical and physiological correlates in bullfrog vestibular nerve. J Neurophysiol 61:688–701PubMedGoogle Scholar
  185. [185]
    Hood JD, Kajan A (1985) Observations upon the evoked responses to natural vestibular stimulation. EEG Clin Neurophysiol 62:589–593Google Scholar
  186. [186]
    Horn E (1983) Fortschritte der Zoologie. G. Fischer, Stuttgart, S 213–229Google Scholar
  187. [187]
    Howard IOP (1982) Human visual orientation. Wiley, New YorkGoogle Scholar
  188. [188]
    Howard J, Hudspeth AJ (1987) Adaptation of mechano-electrical transduction in hair cells. Disc Neurose 4:138–145Google Scholar
  189. [189]
    Howard J, Roberts WM, Hudsepth AJ (1988) Mechanoelec-trical transduction by haircells. Ann Rev Biophys Biophys Chem 17:99–124CrossRefGoogle Scholar
  190. [190]
    Hudspeth AJ, Corey DP (1977) Sensivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411PubMedCrossRefGoogle Scholar
  191. [191]
    Hudspeth AJ, Lewis RS (1988) A model for electrical resonance and frequency tuning in saccular hair cells of the bullfrog (Rana catesbeiana). J Physiol 400:275–297PubMedGoogle Scholar
  192. [192]
    Igarashi M (1974) Dimensional study of the vestibular end organ apparatus. Laryngoscope 77:1806–1817CrossRefGoogle Scholar
  193. [193]
    Igarashi M, Takahashi M, Kubo T, Alford BR, Wright WK (1980) Effect of off-vertical tilt and macular ablation on postrotatory nystagmus in the squirrel monkey. Acta Otolaryngol (Stockh) 90:93–99CrossRefGoogle Scholar
  194. [194]
    Igarashi M (1984) Vestibular compensation. An overview. Acta Otolaryngol (Stockh) 406 [Suppl]:78–82Google Scholar
  195. [195]
    Israel I, Berthoz A (1989) Contribution of the otoliths to the calculation of linear displacement. J Neurophysiol 62/1: 247–263Google Scholar
  196. [196]
    Ito M (1975) The vestibulo-cerebellar relationships: Vesti-bulo-ocular reflex arc and flocculus. In: Naunton RF (Hrsg) The vestibular system. Academic Press, New YorkGoogle Scholar
  197. [197]
    Ito M (1984) The cerebellum and neural control. Raven, New YorkGoogle Scholar
  198. [198]
    Jäger J, Henn V (1981) Habituation of the vestibulo-ocular reflex (VOR) in the monkey during sinusoidal rotation in the dark. Exp Brain Res 41:108PubMedCrossRefGoogle Scholar
  199. [199]
    Jenkins HA, Honrubia V, Baloh RW (1977) Modification of optokinetic nystagmus by horizontal semicircular canal stimulation in normals humans and patients with cerebellar degeneration. Trans Am Acad Ophthalmol Otolaryngol 84:400–404Google Scholar
  200. [200]
    Jongkees LBW, Philipszoon AJ (1962) Nystagmus provoked by linear acceleration. Acta Physiol Pharmacol Neerl 10:239–247PubMedGoogle Scholar
  201. [201]
    Jung R, Kornhuber HH, Da Fonseca JS (1963) Mutlisensory convergence on cortical neurons. Neuronal effects of visual, acoustic and vestibular stimuli on superior convolutions of the cat’s cortex. Prog in Brain Research Vol 1. Brain Mechanismus. Elsevier, AmsterdamGoogle Scholar
  202. [202]
    Kachar B, Parakkal M, Fex J (1991) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: I. The otolithic membrane. Hearing Res 45:179–190CrossRefGoogle Scholar
  203. [202a]
    Kastenbauer E (Hrsg) (1993) Handbuch der HNO-Heilkun-de. Thieme, StuttgartGoogle Scholar
  204. [203]
    Keck W, Thoma J (1988) Conduction of thermal stimuli in the human temporal bone. Arch ORL 245:335–339Google Scholar
  205. [204]
    Keller EL (1976) Behavior of horizontal semicircular canal afferents in alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 24:459–471PubMedCrossRefGoogle Scholar
  206. [205]
    Kirienko NM, Money KE, Landolt JP, Graybiel A, Johnson WH (1984) Clinical testing of the otoliths: a critical assessment of ocular counterrolling. J Otolaryngol 13:281–288PubMedGoogle Scholar
  207. [206]
    Klinke R, Schmidt CL (1968) Efferente Impulse im Nervus vestibularis bei Reizung des kontralateralen Otolithenor-gans. Pflügers Arch 304:183–188PubMedCrossRefGoogle Scholar
  208. [207]
    Klinke R, Schmidt CL (1970) Efferent influence on the vestibular organ during active movements of the body. Pflügers Arch 318:325–332PubMedCrossRefGoogle Scholar
  209. [208]
    Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54:316–357PubMedGoogle Scholar
  210. [209]
    Kohler I (1956) Die Methode des Brillenversuches in der Wahrnehmungspsychologie: Mit Bemerkungen zur Lehre der Adaptation. Z Exp Angew Psychol 3:381–417Google Scholar
  211. [210]
    Kornhuber HH, Fredrickson JM, Figge U (1965) Die kortikale Projektion der vestibulären Afferenzen beim Rhesus-Affen. Pflügers Arch 283:20Google Scholar
  212. [211]
    Kornhuber HH, Da Fonseca JS (1964) Optovestibular Integration in the cats cortex: A study of sensory covergence on cortical neurons. In: MB Bender (ed) The oculomotor system. Hoeber, NY, pp 239–279Google Scholar
  213. [212]
    Kreidl A (1893) Versuche an Krebsen. Sitzungsberichte Österr Akad Wiss math nat K1 102:149–174Google Scholar
  214. [213]
    Kügelgen G, Hillemacher A (1989) Problem Halswirbelsäule. Aktuelle Diagnostik und Therapie. Springer, Berlin Heidelberg New York, TokyoGoogle Scholar
  215. [214]
    Lackner JR, Graybiel A (1974) Elicitation of vestibular side effects by regional vibration of the head. Aerospace Med 45:1267–1272PubMedGoogle Scholar
  216. [215]
    Lackner JR, Levine M (1979) Changes in apparent body orientation and sensory location induced by vibration of postural muscles. Aviat Space Environ Med 50/4:346–354Google Scholar
  217. [216]
    Lackner JR, Graybiel A (1981) Variations in gravitoinertial force level affect the gain of the vestibulo-ocular reflex: Implications of the etiology of space motion sickness. Aviat Space Environ Med 2:154–158Google Scholar
  218. [217]
    Lannou J, Cazin L, Hamann KF (1980) Responses of central vestibular neurons to horizontal linear acceleration in the rat. Pflügers Arch 385:123–129PubMedCrossRefGoogle Scholar
  219. [218]
    Lichtenberg BK, Young LR, Arrot AP (1982) Human ocular counterrolling induced by varying linear acceleration. Exp Brain Res 48:127–136PubMedCrossRefGoogle Scholar
  220. [219]
    Lindeman HH (1973) The anatomy of the otolith organs. Adv Otorhinolaryngol 20:405–433PubMedGoogle Scholar
  221. [220]
    Lisberger SG (1988) The neural basis for motor learning in the vestibulo-ocular reflex in monkeys. TINS 11/4:147–152Google Scholar
  222. [221]
    Lisberger SG, Pavelko TA (1988) Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. Science 242:771–773PubMedCrossRefGoogle Scholar
  223. [222]
    Listing JB (1855) Beitrag zur physiologischen Optik. Van-denhoeck & Ruprecht, GöttingenGoogle Scholar
  224. [223]
    Lorento de Nó R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30:245–291Google Scholar
  225. [224]
    Lorenz K (1973) Die Rückseite des Spiegels. Versuch einer Naturgeschichte menschlichen Erkennens. Piper, MünchenGoogle Scholar
  226. [223]
    Löwenstein O, Roberts TDM (1949) The equilibrium function of the otolith organs of the thornbakc ray (raja cla-vata). J Physiol 110:392–41525]PubMedGoogle Scholar
  227. [226]
    Löwenstein O, Wersäll J (1959) A functional interpretation of the electron-microscope structure of the sensory hair cells in the cristae of the elasmobranch in terms of directional sensitivity. Nature 184:1807CrossRefGoogle Scholar
  228. [227]
    Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Engelmann, LeipzigGoogle Scholar
  229. [228]
    Markham CH (1989) Anatomy and physiology of otolith-controlled ocular counterrolling. Acta Otolaryngol (Stockh) 468 [Suppl]:263–266CrossRefGoogle Scholar
  230. [229]
    Markham CH, Curthoys IS (1972) Labyrinthine convergence on vestibular nuclear neurons using natural and electrical stimulation. Prog Brain Res 37:121–137PubMedCrossRefGoogle Scholar
  231. [230]
    Masrkl H (1974) The perception of gravity and angular acceleration in invertebrates. In: Kornhuber HH (ed) Hdbk of Sensory Physiology, Vol VI/1. Springer, Berlin Heidelberg New YorkGoogle Scholar
  232. [231]
    Matsuo V, Cohen B (1984) Vertical optokinetic nystagmus and vestibular nystagmus in the monkey: Up-down asymmetry and effects of gravity. Exp Brain Res 53:197–216PubMedCrossRefGoogle Scholar
  233. [232]
    McCabe BF, Ryu JH (1969) Experiments on vestibular compensation. Laryngoscope 79:1728–1736PubMedCrossRefGoogle Scholar
  234. [233]
    McKinley PA, Peterson BW (1985) Voluntary modulation of the vestibuloocular reflex in humans and its relation to smooth pursuit. Exp Brain Res 60:454–464PubMedCrossRefGoogle Scholar
  235. [234]
    McLaren JW, Hillman DE (1979) Displacement of the semicircular canal cupula during sinusoidal rotation. Neurosci 4:2001–2008CrossRefGoogle Scholar
  236. [235]
    Melvill Jones G (1974) The functional significance of semicircular canal size. In: Kornhuber HH (ed) Hdbk of Sensory Physiology, Vol VI/1, Springer, Berlin Heidelberg New YorkGoogle Scholar
  237. [236]
    Melvill Jones G, Davis P (1976) Adaption of cat vestibular-ocular reflex to 200 days of optically reversed vision. Brain Res 103:551–554CrossRefGoogle Scholar
  238. [237]
    Melvill Jones G, Young LR (1978) Subjective detection of vertical acceleration. A velocity-dependent response. Acta Otolaryngol (Stockh) 85:45–53CrossRefGoogle Scholar
  239. [238]
    Melvill Jones G, Rolph R, Downing GH (1980) Comparison of human subjective and oculomotor responses to sinusoidal vertical linear acceleration. Acta Otolaryngol (Stockh) 90:431–440CrossRefGoogle Scholar
  240. [239]
    Melvill Jones G, Berthoz A, Segal B (1984) Adaptive modification of the vestibulo-ocular reflex by mental effort in darkness. Exp Brain Res 56:149–153CrossRefGoogle Scholar
  241. [240]
    Melvill Jones G (1986) Cognitive management of sensory-motor correspondence in visual, vestibular and oculomotor systems. Adv 57:3–10Google Scholar
  242. [241]
    Mergner T, Schrenk R, Müller C (1989) Human DC scalp potentials during vestibular and optokinetic stimulation: non-specific responses? EEG Clin Neurophysiol 73:322–333CrossRefGoogle Scholar
  243. [242]
    Meyer zum Gottesberge A (1988) Imbalanced calcium homeostasis and endolymphatic hydrops. Acta Otolaryngol (Stockh) 460 [Suppl]:18–27CrossRefGoogle Scholar
  244. [243]
    Miles FA, Fuller JH (1974) Adaptive plasticity in the vestibular responses of the rhesus monkey. Brain Res 80: 512–516PubMedCrossRefGoogle Scholar
  245. [244]
    Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Ann Rev Neurosci 4: 273–299PubMedCrossRefGoogle Scholar
  246. [245]
    Minor LB, Goldberg J (1992) Influence of static head position on the horizontal nystagmus evoked by caloric, rotational and optokinetic stimulation in the squirrel monkey. Exp Brain Res 82:1–13Google Scholar
  247. [246]
    Mittelstaedt H, Fricke E (1988) The relative effect of saccular and somatosensory information on spatial perception and control. Adv ORL 42:24–30Google Scholar
  248. [247]
    Money KE, Bonen L, Beatty JD, Kuehn LA, Sokoloff M, Weaver RS (1971) Physical properties of fluids and structures of vestibular apparatus of the pigeon. Amer J Physiol 220:140–147PubMedGoogle Scholar
  249. [248]
    Mountain DC (1986) Electromechanical properties of hair cells. In: Altschuler RA, Hoffmann DW, Bobbin RP (eds) Neurobiology of hearing: The cochlea. Raven, New YorkGoogle Scholar
  250. [249]
    Mowrer OH (1937) The influence of vision during bodily rotation upon the duration of postrotational vestibular nystagmus. Acta Otolaryngol (Stockh) 25:351–364CrossRefGoogle Scholar
  251. [250]
    Nieuwenhuys R, Voogd J, Huizen van C (1991) Das Zentralnervensystem des Menschen. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  252. [251]
    Niven JI, Hixson WC, Correia MJ (1965) Elicitation of horizontal nystagmus by periodic linear acceleration. Acta Otolaryngol (Stockh) 62:429–440CrossRefGoogle Scholar
  253. [252]
    Ödkvist LM, Schwarz DWF, Fredrickson JM, Hassler R (1974) Projection of the vestibular nerve to the area 3a arm filed in the squirrel monkey (saimiri sciureus). Exp Brain Res 21:97–105PubMedCrossRefGoogle Scholar
  254. [253]
    Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:561–581Google Scholar
  255. [254]
    Oman CM (1981) The influence of duct and utricular morphology on semicircular canal response. In: Gual-tierotti T (ed) The vestibular system: Function and morphology. Springer, Berlin Heidelberg New York, Tokyo, pp 251–274CrossRefGoogle Scholar
  256. [255]
    Oman CM, Kulbaski M (1988) Spaceflight affects the 1-g postrotatory vestibulo-ocular reflex. Adv ORL 42:5–8Google Scholar
  257. [256]
    Oman CM, Weigl H (1990) Preflight-postflight VOR changes in spacelab-D1 crew. Abstract for 1990 Barany Society Meeting, TokyoGoogle Scholar
  258. [257]
    Orman S, Flock A (1983) Active control of sensory hair mechanisms implied by susceptibility to media that induce contraction in muscle. Hearing Res 11:261CrossRefGoogle Scholar
  259. [258]
    Ormsby CC, Young LR (1977) Integration of semicircular canal and otolith information for multisensory oriental stimuli. Math Biosci 34:1–21CrossRefGoogle Scholar
  260. [259]
    Owada K, Okubo K (1960) The otolithic reaction on nystagmus by caloric stimulations. Acta Otolaryngol (Stockh) 179 [Suppl]:1–6Google Scholar
  261. [260]
    Paige GD (1985) Caloric responses after horizontal canal inactivation. Acta Otolaryngol (Stockh) 100:321–327CrossRefGoogle Scholar
  262. [261]
    Paige GD, Tomko DL (1991) Eye movement to linear head motion in the squirrel monkey. I. Basic Characteristics. J Neurophysiol 65/5:1170–1182Google Scholar
  263. [262]
    Pellionisz A, Llinás R (1980) Sensoral approach to the geometry of brain function: Cerebellar coordination via metric tensor. Neuroscience 5:1125–1136PubMedCrossRefGoogle Scholar
  264. [263]
    Penfield W (1957) Vestibular sensation and the cerebral cortex. Ann Otol Rhinol Laryngol 66:691–698PubMedGoogle Scholar
  265. [264]
    Peterson BW, Richmond FJ (1988) Control of head movement. Oxford Univ Press, New York OxfordGoogle Scholar
  266. [265]
    Peterson, SK, Frishkopf LS, Lechene C, Oman CM, Weiss TF (1978) Element composition of inner ear lymphs in cats, lizards and skates determined by electron probe microanalysis of liquid samples. J Comp Physiol 126:1–14CrossRefGoogle Scholar
  267. [266]
    Petrossini L, Troiani D (1978) Optic nystagmus and vestibular nuclei: Unitary activity of vestibular neurons during nystagmus. Exp Neurol 60:337–346CrossRefGoogle Scholar
  268. [267]
    Precht W, Maioli C, Dieringer N, Cochran S (1981) Mechanisms of compensation of the VOR after vestibular neurotomy. In: Flohr H, Precht W (eds) Lesion-induced neuronal plasticity in sensorimotor systems. Springer, Berlin Heidelberg New York, pp 221–230Google Scholar
  269. [268]
    Probst T, Katterbach T, Wist ER (in Vorbereitung) Vesti-bulary evoked potentials (VESTEPs) of the horizontal semicircular canals under different body positions in space. J Vest ResGoogle Scholar
  270. [269]
    Raphan T, Cohen B, Matsuo V (1977) A velocity storage mechanism responsible for optokinetic nystagmus (OKN) optokinetic afternystagmus (OKAN) and vestibular nystagmus. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons: Elsevier, Amsterdam, pp 37–47Google Scholar
  271. [270]
    Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248PubMedCrossRefGoogle Scholar
  272. [271]
    Raphan T, Cohen B (1985) Velocity storage and the ocular response to multidimensional vestibular stimuli. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control. Elsevier, AmsterdamGoogle Scholar
  273. [272]
    Raphan T, Cohen B (1988) Organisational principles of velocity storage in 3 dimensions. In: Cohen B, Henn V (eds) Representation of three-dimensional space in the vestibular, oculomotor and visual systems. Ann NY Acad Sci 545:74–92Google Scholar
  274. [273]
    Raphan T, Sturm D (1991) Modeling the spatiotemporal organization of velocity storage in the vestibuloocular reflex by optokinetic studies. J Neurophysiol 66/4:1410–1421Google Scholar
  275. [274]
    Rasmussen GL, Gacek R (1958) Concerning the question of an efferent fibre component of the vestibular nerve of the cat. Anat Res 130:361–362Google Scholar
  276. [275]
    Reisine H, Simpson JI, Henn V (1988) A geometric analysis of semicircular canals and induced activity in their peripheral afferents in the rhesus monkey. Ann NY Acad Sci 545:10–20PubMedCrossRefGoogle Scholar
  277. [276]
    Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: transduction, tuning and transmission in the inner ear. Ann Rev Cell Biol 4:63–92PubMedCrossRefGoogle Scholar
  278. [277]
    Robinson DA (1963) A method of measuring eye movements using a scleral search coil in a magnetic field. IEEE Trans Biomed Eng; BME 137–145Google Scholar
  279. [278]
    Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern 46:185–196CrossRefGoogle Scholar
  280. [279]
    Robinson DA (1985) The coordinated of neurons in the vestibulo-ocular reflex. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control: facts and theories. Elsevier, AmsterdamGoogle Scholar
  281. [280]
    Rosenhall U (1972) Vestibular macular mapping in man. Ann Otol Rhinol Laryngol 81:339–351PubMedGoogle Scholar
  282. [281]
    Ross MD (1985) Anatomic evidence for peripheral neural processing in mammalian gravieceptors. Aviat Space Environ Med 4:338–343Google Scholar
  283. [282]
    Ross MD, Rogers CM, Donovan KM (1986) Innervation patterns in rat saccular macula. Acta Otolaryngol (Stockh) 102:75–86CrossRefGoogle Scholar
  284. [283]
    Sandeman D (1983) The balance and visual systems of swimming crab: their morphology and interaction. In: Horn E (Hrsg) Fortschritte der Zoologie 28. G. Fischer, Stuttgart, S 213–229Google Scholar
  285. [284]
    Sandeman D, Okajima A (1973) Statocyst-induced eye movements in the crab scylla serrata. I. The sensory input from the statocyst. J exp Biol 59:17–38Google Scholar
  286. [285]
    Sans A, Raymond J, Marty R (1970) Responses thalamiques et corticales a la stimulation électrique du nerf vestibulaire chez le Chat. Exp Brain Res 10:265–275PubMedCrossRefGoogle Scholar
  287. [286]
    Sans A, Reymond J, Marty R (1972) Projections des crêtes ampullaires et de Putricle dans les noyaux vestibulaires primaires. Brain Res 44:337–355PubMedCrossRefGoogle Scholar
  288. [287]
    Sans A, Dechesne C (1980) Physiological responses of cat vestibular nerve to selective mechanisms stimulation of the lateral crista ampullaris. Exp Brain Res 40:358–360PubMedCrossRefGoogle Scholar
  289. [288]
    Sans A, Dechesne C (1985) Early development of vestibular receptors in human embryos. Acta Otolaryngol (Stockh) 432 [Suppl]:51–58CrossRefGoogle Scholar
  290. [289]
    Scherer H (1984) Die kalorische Reaktion in der Schwerelosigkeit des Weltalls. Arch Ohren Nasen Kehlkopfheilkd [Suppl II]Google Scholar
  291. [290]
    Scherer H, Clarke AH (1985) The caloric vestibular reaction in space: Physiological considerations. Acta Otolaryngol (Stockh) 100:328–336CrossRefGoogle Scholar
  292. [291]
    Scherer H, Clarke AH, Brandt U, Merbold U, Parker R (1986) Caloric nystagmus in microgravity. In: European vestibular experiments in the Spacelab-1 mission. Exp Brain Res 64:255–263PubMedCrossRefGoogle Scholar
  293. [292]
    Scherer H, Teiwes W, Clarke AH (1991) Measuring three dimensions of eye movements in dynamic situations by means of cideooculography. Acta Otolaryngol (Stockh) 111: 182–187CrossRefGoogle Scholar
  294. [293]
    Scherer H, Clarke AH, Teiwes W, Bahlmann H (1993) Evaluation of the human VOR during active head movements — under one-g and zero-g conditions. Proc. 4. Wissenschaftswoche im Jahrbuch des Klinikum SteglitzGoogle Scholar
  295. [294]
    Schmidt RS (1963) Frog labyrinthine efferent impulses. Acta Otolaryngol (Stockh) 50:51–64CrossRefGoogle Scholar
  296. [295]
    Schnabolk C, Raphan T (1994) Modeling three-dimensional velocity-to-position transformation in oculomotor control. J Neurophysiol 71/2:623–638Google Scholar
  297. [296]
    Schöne H (1980) Orientierung im Raum. Wissenschaftliche Verlagsgesellschaft, StuttgartGoogle Scholar
  298. [297]
    Schor RH (1974) Response of cat vestibular neurons to sinusoidal roll tilt. Exp Brain Res 20:347–362PubMedCrossRefGoogle Scholar
  299. [298]
    Schultheis LW, Robinson DA (1981) Directional plasticity of the vestibulo-ocular reflex in the cat. Ann NY Acad Sci 374:504–512PubMedCrossRefGoogle Scholar
  300. [299]
    Segal BN, Katsarkas A (1988) Goal-directed vestibulo-ocular function in man: gaze stabilization by slow-phase and saccadic eye movements. Exp Brain Res 70:26–32PubMedGoogle Scholar
  301. [300]
    Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10PubMedCrossRefGoogle Scholar
  302. [301]
    Simpson JI, Graf W (1981) Eye-muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. Ann NY Acad Sci 374:20–20PubMedCrossRefGoogle Scholar
  303. [302]
    Simpson JI, Leonard CS, Soodak RE (1988) The accessory optic system: analyzer of self-motion. Ann NY Acad Sci 545:170–179PubMedCrossRefGoogle Scholar
  304. [303]
    Singer W (1982) Recovery mechanisms in the mammalian brain. In: Nicolts J (ed) Repair and regeneration of the nervous system. Springer, Berlin Heidelberg New York, pp 203–226CrossRefGoogle Scholar
  305. [304]
    Skipper JJ, Barnes GR (1989) Eye movements induced by linear acceleration are modified by visualisation of imaginary targets. In: Stahle J (ed) The vestibular and oculomotor system. Acta Otolaryngol (Stockh) 468 [Suppl]:289–294Google Scholar
  306. [305]
    Smith PF, Waele C de, Vidal PP, Darlington CL (1991) Excitatory amini-acid receptors in normal and abnormal vestibular function. Mol Neurobiol 5:369–387PubMedCrossRefGoogle Scholar
  307. [306]
    Smith PF, Curthoys IS (1988) Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 444:295–307PubMedCrossRefGoogle Scholar
  308. [307]
    Smith PF, Curthoys IS (1988) Neuronal activity in the ipsi-lateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 444:308–319PubMedCrossRefGoogle Scholar
  309. [308]
    Smith ST, Curthoys IS, Moore ST (im Druck) The human ocular torsion position response during yaw angular accelerationGoogle Scholar
  310. [309]
    Synder LH, King WM (1992) Effect of viewing distance and location of the axis of heas rotatio on the monkeys vesti-buloocular reflex. I. Eye movement responses. J Neurophysiol 67:861–874Google Scholar
  311. [310]
    Steinhausen W (1931) Über den Nachweis der Bewegung der Cupula in der intakten Bogengangsampulle des Labyrinths bei der natürlichen rotatorischen und calorischen Reizung. Arch Ges Physiol 228:322–328CrossRefGoogle Scholar
  312. [311]
    Steinhausen W (1933) Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinthes des lebenden Hechts. Arch Ges Physiol 232:500–512CrossRefGoogle Scholar
  313. [312]
    Streeter GL (1906/1907) On the development of the membranous labyrinth and the acoustic and facila nerves in the human embryo. Am J ANat 6:139–166CrossRefGoogle Scholar
  314. [313]
    Suzuki JI, Tokumaso K, Goto K (1969) Eye movements from single utricular nerve stimulation in the cat. Arch Otolaryngol 68:350–362CrossRefGoogle Scholar
  315. [314]
    Szentàgothai J (1943) Die zentrale Innervation der Augenbewegungen. Arch Psychiatr Nervenkr 116:721–760.CrossRefGoogle Scholar
  316. [315]
    Szentágothai J (1950) The elementary vestibulo-ocular reflex arc. J Neurophysiol 13:395–407PubMedGoogle Scholar
  317. [316]
    Takumida M, Wersäll J, Bagger-Sjöbäck D (1988) Sterocilia glycocalix and interconnections in the guinea pig vestibular organs. Acta Otolaryngol (Stockh) 106:130–139CrossRefGoogle Scholar
  318. [317]
    Teiwes W (1991) Video-Okulographie: Registrierung von Augenbewegungen in drei Freiheitsgraden zur Erforschung und medizinischen Diagnostik des Gleichgewichtssystems. Med. Dissertation, Technische Universität BerlinGoogle Scholar
  319. [318]
    Teiwes W, Clarke AH, Scherer H (1989) Untersuchung der subjektiven Vertikalen — ein neuer Otolithen-Test? Proc Medtech Berlin 62–65Google Scholar
  320. [319]
    Teiwes W, Clarke AH, Scherer H (1993) Dynamic analysis of ocular torsion in parabolic flight using video-oculo-graphy. Acta Astronautica 29/8: 607–611CrossRefGoogle Scholar
  321. [320]
    Bruggencate G ten (1980) Allgemeine Sinnesphysiologie. In: Gauer OH, Kramer K, Jung R (Hrsg) Allgemeine Sinnesphysiologie, Band 10 der Reihe Physiologie des Menschen. Urban & Schwarzenberg, München Wien BaltimoreGoogle Scholar
  322. [321]
    Braak JWG ter (1936) Untersuchungen über optokinetischen Nystagmus. Arch Neerl Physiol 21:309–316Google Scholar
  323. [322]
    Tomko DL, Wall III C, Robinson FR, Staab JP (1988) Influence of gravity on cat vertical vestibulo-ocular reflex. Exp Brain Res 69:307–314PubMedCrossRefGoogle Scholar
  324. [323]
    Tsuji J, Ito J, Naito Y, Honjo I (1990) The influence of caloric stimulation on the otolith organs in the cat. Eur Arch Otorhinolaryngol 248:68–70PubMedCrossRefGoogle Scholar
  325. [324]
    Trincker D (1965) Physiology des Gleichgewichtsorgans. In: Berendes J, Link R, Zöllner F (Hrsg) Hals-Nasen-Ohrenheilkunde 3. Thieme, Stuttgart, S. 1:311–361Google Scholar
  326. [325]
    Tweed D, Vilis T (1987) Implications of rotational kinematics for the oculomotor system in three dimensions. J Neurophysiol 58:832–849PubMedGoogle Scholar
  327. [326]
    Uchino Y, Suzuki S (1983) Axon collaterals to extraocular motoneuron pools of inhibitory vestibuloocular neurons activated from the anterior, posterior and horizontal semicircular canals in the cat. Neurosci Lett 37:129–135PubMedCrossRefGoogle Scholar
  328. [327]
    Haes U de, Schöne H (1970) Interaction between statolith organs and semicircular canals on apparent vertical and nystagmus. Acta Otolaryngol (Stockh) 69:25–31CrossRefGoogle Scholar
  329. [328]
    Van Egmond AAJ, Groen JJ, Longkees LBW (1949) The mechanics of the semicircular canal. J Physiol 110:1Google Scholar
  330. [329]
    Viévielle T, Clément G, Lestienne F, Berthoz A (1986) Adaptive Modifications of the Optokinetic and Vestibulo-ocular Reflexes in Microgravity. In: Zee DS, Keller EL (eds) Adaptive processes in visual and oculomotor systems. Pergamon, NY, pp 1–9Google Scholar
  331. [330]
    Viévielle T, Masse D (1987) Ocular counter-rolling during active head tilting in humans. Acta Otolaryngol (Stockh) 103:280–290Google Scholar
  332. [331]
    Viirre E, Tweed D, Milner K, Vilis T (1986) A re-examination of the gain of the vestibulo-ocular reflex. J Neurophysiol 56:439–450PubMedGoogle Scholar
  333. [332]
    Vilis T, Hepp K, Schwarz U, Henn V (1989) On the generation of vertical and torsional rapid eye movements in the monkey. Exp Brain Res 77:1–11CrossRefGoogle Scholar
  334. [333]
    Vilis T (1993) Interaction between the rotational and trans-lational vestibulo-ocular reflex. In: Sharpe J, Barber HO (eds) Vertigo. Raven, New York, pp 117–124Google Scholar
  335. [334]
    Vogel H, Thumler RV, Baumgarten R (1986) Ocular coun-terrolling. Acta Otolaryngol (Stockh) 102:457–462CrossRefGoogle Scholar
  336. [335]
    Waespe W, Herrn V (1977) Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp Brain Res 27:523–538PubMedCrossRefGoogle Scholar
  337. [336]
    Waespe W, Henn V (1978) Conflicting visual-vestibular stimulation and vestibular nucleus activity in alert monkeys. Exp Brain Res 33:203–211PubMedCrossRefGoogle Scholar
  338. [337]
    Waespe W, Büttner U, Henn V (1981) Input-output activity of the primata flocculus during visual-vestibular interaction. Ann NY Acad Sci 374:491–503PubMedCrossRefGoogle Scholar
  339. [338]
    Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and paraflucculus in optokinetic nystagmus and visual-vestibular interactions. Exp Brain Res 50:9–33PubMedCrossRefGoogle Scholar
  340. [339]
    Waespe W, Cohen B (1983) Flocculectomy and unit activity in the vestibular nuclei during visual-vestibular interactions. Exp Brain Res 51:23–35PubMedCrossRefGoogle Scholar
  341. [340]
    Waespe W, Cohen B, Raphan T (1985) Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 228:199–202PubMedCrossRefGoogle Scholar
  342. [341]
    Wall C III, Furman JMR (1989) Nystagmus responses in a group of normal humans during earth-horizontal axis rotation. Acta Otolaryngol (Stockh) 108:327–335CrossRefGoogle Scholar
  343. [342]
    Walzl E, Mountcastle V (1949) Projection of vestibular nerve to cerebral cortex of the cat. Am J Physiol 159:506–508Google Scholar
  344. [343]
    Watanuki K, Kagayama M (1973) Fluid spaces in the sensory epithelium fo the crista ampullaris in guinea pigs. Acta Otolaryngol (Stockh) 76:17–23CrossRefGoogle Scholar
  345. [344]
    Watanuki K, Schuknecht HF (1976) A morpholical study of human vestibular sensory epithelia. Arch ORL 102:583–588Google Scholar
  346. [345]
    Wearne SL (1993) Spatial orientation of the human linear and angular vestibulo-ocular reflexes during centrifuga-tion. PhD Thesis, University of SidneyGoogle Scholar
  347. [346]
    Wersäll J (1956) Studies on the structures and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta Otolaryngol (Stockh) 126 [Suppl]: 1–85Google Scholar
  348. [347]
    Westhofen M (1991) Die klinische Diagnostik der Oto-lithenfunktion. Otorhinolaryngol Nova 1:26–36Google Scholar
  349. [348]
    Wetzig J, Reiser M, Martin E, Bregenzer N, Baumgarten RJ (1990) Unilateral centrifugation of the otoliths as a new method to determine bilateral asymmetries of the otolith apparatus in man. Acta Astronautica 21:519–525PubMedCrossRefGoogle Scholar
  350. [349]
    Young L (1985) Adaptation to midified otolith input. In: Berthoz A, Melvill Jones G (eds) Adaptive mechanisms in gaze control. Elsevier, Amsterdam, pp 151–1612Google Scholar
  351. [350]
    Young LR, Teiwes W, Clakre AH, Merfeld DM, Oman CM, Scherer H (1993) Otholith contribution to torsional eye movements during dynamic linear acceleration. Proc Aerospace Med Ass Meeting, 118, TorontoGoogle Scholar
  352. [351]
    Zee DS, Hain TC (1993) Otolith-ocular reflexes. In: Sharpe JA, Barber HO (eds) The vestibular-ocular reflex and vertigo. Raven, New York, pp 69–78Google Scholar
  353. [352]
    Zenner HP, Zimmermann U (1985) Motile response of vestibular hair cells following caloric electrical or chemical stimuli. Acta Otolaryngol (Stockh) 111:291–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. H. Clarke
    • 1
  1. 1.Labor für experimentelle Gleichgewichtsforschung, HNO-KlinikUniversitätsklinikum Benjamin FranklinBerlinDeutschland

Personalised recommendations