Skip to main content

Physiologie und Pathophysiologie des Corti-Organs

  • Conference paper
  • 27 Accesses

Zusammenfassung

Die Kenntnis physiologischer und pathophysiologischer Zusammenhänge erlaubt es kausal begründete Konzepte in Diagnostik und Therapie zu entwickeln. Auf vielen Gebieten der klinischen Medizin wurden die Organfunktionen bereits vor einigen Jahren auf molekularer Ebene geklärt. Hieraus entwickelten sich zahlreiche diagnostische und therapeutische Ansatzpunkte. Trotz enormer Fortschritte in der Hörforschung stehen jedoch pathophysiologisch begründete Therapiekonzepte für das Innenohr noch weitgehend aus. Dies beruht auf der Tatsache, daß die Innenohrstrukturen sehr vulnerabel sind und zudem durch eine feste Knochenhülle geschützt, nur schwer für den Untersucher zugänglich sind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Altschuler RA, Fex J, Parakkal MH, Eckenstein F (1984) Colocalization of enkephalin-like and choline acetyltransferase like immunoreactivities in olivocochlear neurons of the guinea pig. J Histochem Cytochem 32:839–843

    PubMed  CAS  Google Scholar 

  2. Altschuler RA, Parakkal MH, Rubio JA, Hoffmann DW, Fex J (1984) Enkephalin-like immunoreactivity in the guinea pig organ of Corti: Ultrastructural and lesion studies. Hear Res 16:17–31

    PubMed  CAS  Google Scholar 

  3. Altschuler RA, Kacher B, Rubio JA, Parakkal MH, Fex J (1985) Immunocytochemical localization of cholineacetyltransferase — like immunoreactivity in the guinea pig cochlea. Brain Res 338:1–11

    PubMed  CAS  Google Scholar 

  4. Altschuler RA, Hoffmann DW, Reeks KA, Fex J (1985) Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig: Hear Res 17:249–258

    PubMed  CAS  Google Scholar 

  5. Altschuler RA, Fex J (1986) Efferent neurotransmitters. In: Altschuler RA, Hoffmann DW, Bobbin RP (Hrsg) Neurobiology of hearing: The cochlea. Raven, New York, pp 383–396

    Google Scholar 

  6. Altschuler RA, Sheridan CE, Horn JW, Wenthold RJ (1989) Immunocytochemical localization of glutamate immunoreactivity in the guinea pig cochlea. Hear Res 42:167–174

    PubMed  CAS  Google Scholar 

  7. Anderson SD, Kemp DT (1979) The evoked cochlear mechanical response in laboratory primates. Arch Otorhinolaryngol 224:47–54

    PubMed  CAS  Google Scholar 

  8. Anniko M, Arnold W (1991) Acetylcholine receptor localization in human adult cochlear and vestibular hair cells. Acta Otolaryngol (Stockh) 111:491–499

    CAS  Google Scholar 

  9. Anniko M, Sobin A (1986) Cisplatin: Evaluation of its ototoxic potential. Am J Otolaryngol 7:276–293

    PubMed  CAS  Google Scholar 

  10. Arnold W, Anniko M, Pfaltz CR (1990) Funktionelle Morphologie der äußeren Haarzellen des Menschen: Neue Aspekte. Laryngol Rhinol Otol (Stuttg) 69:177–186

    CAS  Google Scholar 

  11. Arnold W, Morgenstern C, Thorn L, Schinko I (1978) Morphologische und funktionelle Veränderungen am Innenohr nach Vergiftung mit Etacrynsäure und Atoxyl. Arch Otorhinolaryngol 218:179–190

    PubMed  CAS  Google Scholar 

  12. Arnold W, Nadol JB Jr., Weidauer H (1981) Ultrastructural histopathology in a case of human ototoxicity due to loop diuretics. Acta Otolaryngol (Stockh) 1:391–414

    Google Scholar 

  13. Ashmore JF (1987) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347

    CAS  Google Scholar 

  14. Ashmore JF, Meech RW (1986) Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322:368–371

    PubMed  CAS  Google Scholar 

  15. Ashmore JF, Housley GD, Kolston PJ (1992) Two control systems for the outer hair cell motor. In: Cazals Y, Demany L, Horner K (Hrsg) Advances in Biosciences, Auditory Physiology and Perception. Vol 83. Pergamon, Oxford, pp 19–26

    Google Scholar 

  16. Assad JA, Shepherd GMG, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994

    PubMed  CAS  Google Scholar 

  17. Barron SE, Daigneault EA (1987) Effect of cisplatin on hair cell morphology and lateral wall Na, K-ATPase activity. Hear Res 26:131–137

    PubMed  CAS  Google Scholar 

  18. Bartolami S, Guiramand J, Lenoir M, Pujol R, Recasens M (1990) Carbachol-induced inositol phosphate formation during rat cochlea development. Hear Res 47:229–234

    PubMed  CAS  Google Scholar 

  19. Bartolami S, Planche M, Pujol R (1993) Inhibition of the carbachol-evoked synthesis of inositol phosphates by ototoxic drugs in the rat cochlea. Hear Res 67:203–210

    PubMed  CAS  Google Scholar 

  20. Beck C (1984) Pathologie der Innenohrschwerhörigkeit. Arch Otorhinolaryngol [Suppl I]:1–57

    Google Scholar 

  21. Beck A, Maurer J, Welkoborsky HJ, Mann W (1992) Veränderungen transitorisch evozierter otoakustischer Emissionen unter Chemotherapie mit Cisplatin und 5 FU. HNO 40:123–127

    PubMed  CAS  Google Scholar 

  22. Békésy G von (1934) Über die nichtlinearen Verzerrungen des Ohres. Ann Phys Lpz 20:809–811

    Google Scholar 

  23. Békésy G von (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  24. Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    PubMed  CAS  Google Scholar 

  25. Bledsoe SC, Bobbin RP, Chihal DM (1981) Kainic acid: An evaluation of its action on cochlear potentials. Hear Res 4:109–120

    PubMed  CAS  Google Scholar 

  26. Bobbin RP, Konishi T (1971) Acetylcholine mimics crossed olivocochlear bundle stimulation. Nature 231:222–223

    CAS  Google Scholar 

  27. Bobbin RP, Konishi T (1974) Action of cholinergic and anticholinergic drugs at the crossed olivocochlear bundle-hair cell junction. Acta Otolaryngol (Stockh) 77:56–65

    CAS  Google Scholar 

  28. Bobbin RP, Thompson MH (1978) Glutamate stimulates cochlear afferent nerve fibers. Fed Proc 37:613

    Google Scholar 

  29. Bobbin RP, Fallon M, Puel JL, Bryant G, Bledsoe SC, Zajic G, Schacht J (1990) Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells. Hear Res 47:39–52

    PubMed  CAS  Google Scholar 

  30. Bonfils P, Bertrand Y, Uziel A (1988) Evoked otoacoustic emissions: normative data and presbyacusis. Audiology 27:27–35

    PubMed  CAS  Google Scholar 

  31. Bonfils P, Piron JP, Uziel A, Pujol R (1988) A correlative study of evoked otoacoustic emission properties and audiometric thresholds. Arch Otorhinolaryngol 245:53–56

    PubMed  CAS  Google Scholar 

  32. Bonfils P, Uziel A, Pujol R (1988) Screening for auditory dysfunction in infants by evoked oto-acoustic emissions. Arch Otolaryngol Head Neck Surg 114:887–890

    PubMed  CAS  Google Scholar 

  33. Bonfils P, Uziel A, Pujol R (1988) Evoked otoacoustic emissions: a fundamental and clinical survey. ORL 50:212–218

    PubMed  CAS  Google Scholar 

  34. Bonfils P, Uziel A (1988) Evoked otoacoustic emissions in patients with acoustic neuromas. Am J Otol 9:412–417

    PubMed  CAS  Google Scholar 

  35. Bonfils P, Uziel A (1989) Clinical applications of evoked acoustic emissions: Results in normally hearing and hearing-impaired subjects. Ann Otol Rhinol Laryngol 98:326–331

    PubMed  CAS  Google Scholar 

  36. Bonner TI (1989) New subtypes of muscarinic acetlycholine receptors. Trends Pharmacol Sci 10 [Suppl]:11–15

    Google Scholar 

  37. Bormann J (1988) Electrophysiology of GABAA receptor subtypes. TINS 11/3:112–116

    Google Scholar 

  38. Bosher SK (1979) The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea pig. J Physiol 293:329–345

    PubMed  CAS  Google Scholar 

  39. Bosher SK (1980) The nature of the ototoxic actions of ethacrynic acid upon the mammalian endolymph system. I. Functional aspects. Acta Otolaryngol (Stockh) 89: 407–418

    CAS  Google Scholar 

  40. Boston Collaborative Drug Surveillance Program (1973) Drug induced deafness: A cooperative study. JAMA 224:515–516

    Google Scholar 

  41. Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939

    PubMed  CAS  Google Scholar 

  42. Bray P, Kemp DT (1987) An advanced cochlear echo technique suitable for infant screening. Br J Audiol 21:191–204

    PubMed  CAS  Google Scholar 

  43. Brown AM (1987) Acoustic distortion from rodent ears: a comparison of responses from rats, guinea pigs and gerbils. Hear Res 31:25–39

    PubMed  CAS  Google Scholar 

  44. Brown AM, Kemp DT (1984) Suppressibility of the 2f1-f2 stimulated emissions in gerbil and man. Hear Res 13: 29–37

    PubMed  CAS  Google Scholar 

  45. Brown AM, McDowell B, Forge A (1989) Acoustic distorsion products can be used to monitor the effects of chronic gentamycin treatment. Hear Res 42:143–156

    PubMed  CAS  Google Scholar 

  46. Brown MC, Nuttal AF, Masta RI (1983) Intracellular recordings from cochlear outer hair cells: effects of stimulation of the crossed olivo-cochlear bundle. Science 222:69–72

    PubMed  CAS  Google Scholar 

  47. Brown RD, McElwee TW (1972) Effects of intra-arterially and intravenously administered ethacrynic acid and furosemide on cochlear N1 in cats. Toxicol App1 Pharmacol 22:589–594

    CAS  Google Scholar 

  48. Brown RD, Feldman AM (1978) Pharmacology of hearing and ototoxicity. Ann Rev Pharmacol Toxicol 18:233–252

    CAS  Google Scholar 

  49. Brownell WE (1986) Outer hair cell motility and cochlear frequency selectivity. In: Webster WR, Aitkin LM (eds) Auditory frequency selectivity. Plenum, New York, pp 109–118

    Google Scholar 

  50. Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hearing 11:82–92

    CAS  Google Scholar 

  51. Brownell WE, Bader CR, Bertrand de Ribeaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    PubMed  CAS  Google Scholar 

  52. Brundin L, Flock A, Canlon B (1989) Sound-induced motility of isolated cochlear outer hair cells is frequency-specific. Nature 342:814–816

    PubMed  CAS  Google Scholar 

  53. Brundin L, Flock B, Flock A (1992) Sound induced displacement response of the guinea pig hearing organ and its relation to the cochlear potentials. Hear Res 58:175–184

    PubMed  CAS  Google Scholar 

  54. Brundin L, Russell J (1993) Sound-induced movements and frequency tuning in outer hair cells isolated from the guinea pig cochlea. Proc Intl Symp Biophysics of hair cell sensory systems. World Scientific, Singapore, pp 182–191

    Google Scholar 

  55. Buno W (1978) Auditory nerve fiber activity influence by contralateral ear sound stimulation. Exp Neurol. 59:62–74

    PubMed  Google Scholar 

  56. Burns EM, Strickland EA, Tubis A, Jones K (1984) Interactions among spontaneous emissions. I. Distortion products and linked emissions. Hear Res 16:271–278

    PubMed  CAS  Google Scholar 

  57. Burns EM, Strickland EA, Jones K, Tubis A (1984) The relationship of threshold fine structure to spontaneous otoacoustic emissions. J Acoust Soc Am 75[Suppl I]:82

    Google Scholar 

  58. Canlon B, Cartaud J, Changeux JP (1990) Localization of α-Bungarotoxin sites on outer hair cells. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 119

    Google Scholar 

  59. Canlon B, BrUndin L (1991) Mechanically induced length changes of isolated outer hair cells are metabolically dependent. Hear Res 53:7–16

    PubMed  CAS  Google Scholar 

  60. Canlon B, Homburger V, Bockaert J (1991) The identification and localization of the guanine nucleotide binding protein Go in the auditory system. J Neurosci 3:1338–1342

    Google Scholar 

  61. Chevalier J, Ripoche P, Pisam M, Bourget J, Hugon JS (1976) A time course study of water permeability and morphological alterations induced by mucosal hyperosmolarity in frog urinary bladder. Cell Tiss Res 154:345–356

    Google Scholar 

  62. Cody AR, Johnstone BU (1982) Temporary threshold shift modified by binaural acoustic stimulation. Hear Res 6:199–205

    PubMed  CAS  Google Scholar 

  63. Cody AR, Russell IJ (1988) Acoustically induced hearing loss: intracellular studies in the guinea pig cochlea. Hear Res 35:59–70

    PubMed  CAS  Google Scholar 

  64. Collingridge GI, Herron CE, Lester RAJ (1988) Frequency-dependent N-methyl-D-aspartate receptor-mediated synaptic transmission in rat hippocampus. J Physiol (Lond) 399:301–312

    CAS  Google Scholar 

  65. Comis SD, Leng G (1979) Action of putative neurotransmitters in the guinea pig cochlea. Exp Brain Res 36:119–128

    PubMed  CAS  Google Scholar 

  66. Comis SD, Rhys-Evans PH, Osborne MP et al. (1986) Early morphological and chemical changes induced by cisplatin in the guinea pig organ of Corti. J Larnygol Otol 100:1375–1383

    CAS  Google Scholar 

  67. Comis SD, Osborne MP, Jeffries DJr. (1990) Effect of furo-semide upon morphology of hair bundles in guinea pig cochlea hair cells. Acta Otolaryngol (Stockh) 109:49–56

    CAS  Google Scholar 

  68. Conboy JG (1993) Structure, function and molecular genetics of erythroid membrane skeletal protein 4.1 in normal and abnormal red blood cells. Sem Hematol 30:58–73

    CAS  Google Scholar 

  69. Corey DP, Hudspeth AJ (1979) Response latency of vertebrate hair cells. Biophys J 26:499–506

    PubMed  CAS  Google Scholar 

  70. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bull frog saccular hair cells. Eur J Neurosci 3:962–976

    CAS  Google Scholar 

  71. Covell WP (1938) A cytologic study of the effects of drugs on the cochlea. Arch Otolaryngol 23:633–641

    Google Scholar 

  72. Crann SA, Huang MY, McLaren JD et al. (1992) Formation of a toxic metabolite from gentamicin by a hepatic cytolsolic fraction. Biochem Pharmacol 43:1835–1839

    PubMed  CAS  Google Scholar 

  73. Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol (Lond) 364:359–379

    CAS  Google Scholar 

  74. Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J Physiol 434:369–398

    PubMed  CAS  Google Scholar 

  75. Dallmayr C (1985) Spontane otoakustische Emissionen: Statistik und Reaktion auf akustische Störtöne. Acustica 63:67–75

    Google Scholar 

  76. Dallmayr C (1987) Stationary and dynamic properties of simultaneous evoked otoacoustic emissions (SEOAE). Acoustica 59:243–255

    Google Scholar 

  77. Dallos PA (1985) Response characteristics of mammalian cochlear hair cells. Eur J Neurosci 5:1591–1608

    CAS  Google Scholar 

  78. Dallos P (1992) The actice cochlea. Eur J Neurosci 12:4575–4585

    CAS  Google Scholar 

  79. Dallos P, Cheatham MA (1976) Compound action potential (CAP) tuning curves. J Acoust Soc Am 59:591–597

    PubMed  CAS  Google Scholar 

  80. Dallos R, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383

    PubMed  CAS  Google Scholar 

  81. Dallos P, Santos-Sacchi J, Flock A (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584

    PubMed  CAS  Google Scholar 

  82. Dannhof BJ, Bruns V (1991) The organ of Corti in the bat Hipposideros bicolor. Hear Res 53:253–268

    PubMed  CAS  Google Scholar 

  83. Davis H, Morgan CT, Hawkins JE, Galambos R, Smith F (1950) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol (Stockh) 88 [Suppl]: 58

    Google Scholar 

  84. Deer B, Hunter-Duvar I (1982) Salicylate ototoxicity in the chinchilla: A behavorial and electronmicroscope study. J Otolaryngol 11:260–264

    PubMed  CAS  Google Scholar 

  85. Delb W, Feilen S, Koch A, Federspil P (1983) Vergleichende Untersuchungen zur Ototoxizität des Cisplatins und des Carboplatins. Laryngol Rhinol Otol (Stuttg) 72:24–27

    Google Scholar 

  86. Didier A, Nuttall AL, Miller J (1990) Sodium salicylate induced blood flow changes and hearing losses in the guinea pig cochlea. Proc Annu Meet Assoc Res Otlaryngol, St. Petersburg B/FL, p 310

    Google Scholar 

  87. Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell surface cisternae and electromotility. J Neurocytol 20:637–653

    PubMed  CAS  Google Scholar 

  88. Dohlman GF (1965) The mechanism of secretion and absorption of endolymph in vestibular apparatus. Acta Otolaryngol (Stockh) 59:275–288

    Google Scholar 

  89. Douek E, Dodson H, Bannister L (1983) The effects of sodium salicylate on the cochlea of the guinea pig. J Larnygol Otol 93:793–799

    Google Scholar 

  90. Drenckhahn D, Kellner J, Mannherz HG, Gröschel-Steward U, Kendrick-Jones J, Scholey J (1982) Absence of myosin in stereocilia of hair cells. Nature 300:351–532

    Google Scholar 

  91. Drenckhahn D, Schäfer T, Prinz M (1985) Actin, myosin and associated proteins in the vertebrate auditory and vestibular organs. In: Drescher D, Thomas CC (eds) Auditory biochemistry. Thomas CC, Springfield/IL, pp 317–335

    Google Scholar 

  92. Drescher MJ, Drescher DG, Medina JE (1983) Effect of sound stimulation at several levels on concentrations of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear. J Neurochem 41: 309–320

    PubMed  CAS  Google Scholar 

  93. Dulon D, Aran JM, Schacht J (1988) Potassium-depolarization induces motility in outer hair cells by an osmotic mechanism. Hear Res 32:123–130

    PubMed  CAS  Google Scholar 

  94. Dulon D, Aurousseau C, Erre JP, Aran JM (1988) Relationship between the nephrotoxicity and ototoxicity induced by gentamycin in the guinea pig. Acta Otolaryngol (Stockh) 106:219–225

    CAS  Google Scholar 

  95. Dulon D, Zajic G, Aran JM et al. (1989) Aminoglycoside antibiotics impair calcium-entry but not viability and motility of cochlear outer hair cells. Eur J Neurosci Res 24:338–346

    CAS  Google Scholar 

  96. Dulon D, Zajic G, Schacht J (1991) Differential motile response of isolated inner and outer hair cells to stimulation by potassium and calcium ions. Hear Res 52:225–232

    PubMed  CAS  Google Scholar 

  97. Eastman A (1986) Réévaluation of interaction of cisdichlo-ro-(ethylendiamine)-platinum (II) with DNA. Biochemistry 25:3912–3915

    PubMed  CAS  Google Scholar 

  98. Eckenstein F, Sofroniew MV (1983) Identification of central cholinergic neurons containing both choline acetyl-transferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. Eur J Neurosci 3:2286–2291

    CAS  Google Scholar 

  99. Ehrenberger K, Benkoe E, Felix D (1982) Suppressive action of picrotoxin, a GABA antagonist, on labyrinthine spontaneous nystagmus and vertigo in man. Arch Otorhinolaryngol 93:269–273

    CAS  Google Scholar 

  100. Ehrenberger K, Felix D (1991) Glutamate receptors in afferent cochlear neurotransmission in guinea pigs. Hear Res 52:73–80

    PubMed  CAS  Google Scholar 

  101. Eisenberg BR, Eisenberg RS (1982) The T-SR junction in contracting single skeletal muscle fibers. J Gen Physiol 79:1–19

    PubMed  CAS  Google Scholar 

  102. Elberling C, Parbo J, Johnson NJ, Bagi P (1985) Evoked acoustic emission: Clinical application. Acta Otolaryngol (Stockh) 421:77–85

    CAS  Google Scholar 

  103. Erwall C, Bagger-Sjöbäck D, Rask-Andersen H (1988) Effects of ototoxic diuretics (loop diuretics) on the endolymphatic sac. ORL 50:42–53

    PubMed  CAS  Google Scholar 

  104. Erwig H, Blömer E, Bauer HH (1991) Zur Evaluation transitorisch evozierter otoakustischer Emissionen bei Kindern mit Tubenventilationsstörungen. Laryngo Rhino Otol (Stuttg) 70:635–640

    CAS  Google Scholar 

  105. Escoubet B, Amsallem P, Ferray E et al. (1985) Prostaglandin synthesis by the cochlea of the guinea pig: Influence of aspirin, gentamycin and acoustic stimulation. Prostaglandins 29:589–599

    PubMed  CAS  Google Scholar 

  106. Evans EF (1974) Auditory frequency selectivity and the cochlear nerve. In: Zwicker E, Terhard E (eds) Facts and models in hearing. Springer, Berlin Heidelberg New York, pp 118–129

    Google Scholar 

  107. Evans EA, Klinke R (1982) The effects of intracochlear and systemic furosemide on the properties of single cochlear nerve fibers in the cat. J Physiol 331:409–428

    PubMed  CAS  Google Scholar 

  108. Evans EF (1992) Auditory processing of complex sounds: an overview. Phil Trans R Soc Lond 336:295–306

    CAS  Google Scholar 

  109. Evans EF, Wilson JP (1975) Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 190:1218–1221

    PubMed  CAS  Google Scholar 

  110. Evans EF, Harrison RV (1976) Correlation between cochlear outer hair cell damage and deterioration of cochlear nerve tuning properties in the guinea pig. J Physiol (Lond) 256:43–48

    Google Scholar 

  111. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73/2:309–373

    Google Scholar 

  112. Eybalin M, Pujol R (1983) A radioautographic study of 3H-L-glutamate and 3H-L-Glutamine uptake in the guinea pig cochlea. Neuroscience 9:863–871

    PubMed  CAS  Google Scholar 

  113. Eybalin M, Pujol R (1984) Immunofluorescence with metenkephalin and leu-enkephalin antibodies in the guinea pig cochlea. Hear Res 13:135–140

    PubMed  CAS  Google Scholar 

  114. Eybalin M, Cupo AA, Pujol R (1984) Met-enkephalin characterization in the cochlea: High-performance liquid chromatography and immunoelectron microscopy. Brain Res 305:313–322

    PubMed  CAS  Google Scholar 

  115. Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65:261–270

    PubMed  CAS  Google Scholar 

  116. Eybalin M, Rebillard G, Jarry T, Cupo A (1987) Effect of noise level on the Met-enkephalin content of guinea pig cochlea. Brain Res 418:189–192

    PubMed  CAS  Google Scholar 

  117. Eybalin M, Altschuler RA (1990) Immunelectron microscopic localization of neurotransmitters in the cochlea. J Electr Microsc Technique 15:209–224

    CAS  Google Scholar 

  118. Eybalin M, Renard N, Ottersen OP, Storm-Mathisen J, Pujol R (1991) Ultrastructural immunolocalization of glutamate in the guinea pig organ of Corti. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 18

    Google Scholar 

  119. Fagg GF (1985) L-Glutamate, excitatory amino-acid receptors and brain functions. Trends Neurosci 8:207–210

    CAS  Google Scholar 

  120. Falbe-Hansen J (1941) Clinical and experimental histological studies of the effect of salicylates and quinine on the ear. Acta Otolaryngol (Stockh) 44 [Suppl]:1–216

    Google Scholar 

  121. Fechter LD, Youg JS, Carlisle L (1988) Potentiation of noise induced threshold shifts and hair cell loss by carbon monoxide. Hear Res 34:39–48

    PubMed  CAS  Google Scholar 

  122. Federspil P, Mausen H (1973) Experimentelle Untersuchungen zur Ototoxizität des Furosemids. Res Exp Med 161:175–184

    CAS  Google Scholar 

  123. Federspil P (1981) Experimentelle Untersuchungen zur Ototoxizität der Aminoglykosid-Antibiotika und ihre klinische Bedeutung. Laryngol Rhinol Otol (Stuttg) 60: 553–557

    CAS  Google Scholar 

  124. Federspil P (1994) Toxische Schäden des Innenohres. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Larnygologie in Praxis und Klinik. Thieme, Stuttgart, S 782–796

    Google Scholar 

  125. Felix D, Ehrenberger K (1985) The action of putative neurotransmitter substances in the mammalian labyrinth. In: Drescher DG (ed) Auditory biochemistry. Thomas CC, Springfield/IL, pp 68–79

    Google Scholar 

  126. Felix D, Ehrenberger K (1990) A microiontophoretic study of the role of excitatory amino acids at the afferent synapses of mammalian inner hair cells. Eur Arch Otorhinolaryngol 248:1–3

    PubMed  CAS  Google Scholar 

  127. Felix D, Ambühl P, Ehrenberger K (1991) The efferent modulation of inner hair cell afférents. Workshop Inner Ear Biol, Tübingen, p 42

    Google Scholar 

  128. Fex J (1968) Efferent inhibition in the cochlea by the olivocochlear bundle. In: de Reuck AVS, Knight J (eds) Hearing mechanisms in vertebrates. Ciba Foundation Symposium. Churchill, London pp 169–186

    Google Scholar 

  129. Fex J (1973) Neuropharmacology and potentials of the inner ear. In: Moller AR (ed) Basic mechanisms in hearing. Academic Press, New York London, pp 169–186

    Google Scholar 

  130. Fex J, Wenthold RJ (1976) Choline acetyltransferase, glutamate decarboxylase und tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig. Brain Res 109:575–585

    PubMed  CAS  Google Scholar 

  131. Fex J, Altschuler RA (1981) Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat. Proc Natl Acad Sci USA 78:1255–1259

    PubMed  CAS  Google Scholar 

  132. Fex J, Altschuler RA (1984) Glutamic acid decarboxylase immunoreactivity of cochlear neurons in the organ of Corti of guinea pig and rat. Hear Res 15:123–131

    PubMed  CAS  Google Scholar 

  133. Fex J, Altschuler RA (1985) Immunohistochemistry of the mammalian cochlea: Results and expectations. In: Drescher DG (ed) Auditory biochemistry. Thomas CC, Springfield/IL, pp 5–30

    Google Scholar 

  134. Fitzgerald JJ, Robertson D, Johnstone BM (1993) Effects of intracochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig. Hear Res 67:147–156

    PubMed  CAS  Google Scholar 

  135. Fleischer K (1956) Histologische und audiometrische Studie über altersbedingten Struktur-und Funktionswandel des Innenohres. Arch Ohren Nasen Kehlkopf Heilkd 170:142–167

    CAS  Google Scholar 

  136. Fleischman RW, Stadnicki, Ethier MF, Schaeppi U (1975) Ototoxicity of cis-dichlorodiammine Platinum (II) in the guinea pig. Toxicol Appl Pharmacol 33:320–332

    PubMed  CAS  Google Scholar 

  137. Flock A, Cheung H (1977) Actin filaments in sensory hairs of inner ear receptor cells. Arch Otorhinolaryngol 230:339–343

    Google Scholar 

  138. Flock A, Cheung CH, Flock B, Utter G (1981) Three sets of actin filaments in sensory cells of the inner ear. Identification and functional orientation determined by gel electrophoresis, immunfluorescence and electron microscopy. J Neurocytol 10:133–147

    PubMed  CAS  Google Scholar 

  139. Flock A, Bretscher A, Weber K (1982) Immunhistochemical localization of several cytoskeletal proteins in inner sensory and supporting cells. Hear Res 6:75–89

    Google Scholar 

  140. Flock A, Orman S (1983) Micromechanical properties of sensory hairs on receptor cells of the inner ear. Hear Res 11:249–260

    PubMed  CAS  Google Scholar 

  141. Flock A, Strelioff D (1984) Graded and nonlinear mechanical properties of sensory hairs in the mammalian hearing organ. Nature 310:597–598

    PubMed  CAS  Google Scholar 

  142. Flock A, Flock B, Ulfendahl M (1986) Mechanics of movement in outer hair cells and a possible structural basis. Arch Otorhinolaryngol 243:83–90

    PubMed  CAS  Google Scholar 

  143. Fonnum F (1991) Neurochemical studies on glutamate-mediated neurotransmission. In: Meldrum BS, Moroni F, Woods JH (eds) Excitatory amino acids. Raven, New York, pp 15–25

    Google Scholar 

  144. Forge A (1985) Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear Res 19:171–182

    PubMed  CAS  Google Scholar 

  145. Forge A (1991) A structural features of the lateral walls in mammalian cochlear of outer hair cells. Cell Tissue Res 265:473–483

    PubMed  CAS  Google Scholar 

  146. Fritze W, Köhler W (1985) Frequency composition of spontaneous cochlear emissions. Arch Otorhinolaryngol 242:43–48

    PubMed  CAS  Google Scholar 

  147. Fritze W, Köhler W (1986) Otoakustische Emissionen und ihre Bedeutung für die Innenohrforschung. Laryngol Rhinol Otol (Stuttg) 65:600–603

    CAS  Google Scholar 

  148. Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. Eur J Neuro-sci 12/3:800–809

    Google Scholar 

  149. Furness DN, Steyger PS, Hackney CM (1988) The organization of microtubules in cochlear hair cells. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 171

    Google Scholar 

  150. Furness DN, Hackney CM (1990) Comparative ultrastructure of subsurface cisternae in inner and outer hair cells of the guinea pig cochlea. Eur Arch Otorhinolaryngol 247:12–15

    PubMed  CAS  Google Scholar 

  151. Galambos R (1956) Suppression of auditory nerve activity by stimultion of efferent fibers to cochlea. J Neurophysiol 19:424–437

    PubMed  CAS  Google Scholar 

  152. Galley N, Klinke R, Oertel W, Pause M, Storch WH (1973) The effect of intracochlearly administered acetylcholine-blocking agents on the efferent synapses of the cochlea. Brain Res 64:55–63

    PubMed  CAS  Google Scholar 

  153. Garetz, Rhee DJ, Schacht J (1993) Attenuation of gentamicin ototoxicity by glutathione. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 16:141

    Google Scholar 

  154. Gignonx M, Martin H, Calgfmger H (1966) Troubles cochleovestibulaire après tentative de suicide à l’aspirine. J Fr Otorhinolaryngol 15:631–635

    Google Scholar 

  155. Gil-Loyzaga P, Pares-Herbute N (1989) HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Dev Brain Res 48:157–160

    CAS  Google Scholar 

  156. Gil-Loyzaga P, Fernandez-Mateos P, Vicente-Torres MA, Remezal M et al. (1993) Effects of noise stimulation on cochlear dopamin metabolism. Brain Res 623:177–180

    PubMed  CAS  Google Scholar 

  157. Gitter AH, Zenner HP, Frömter E (1986) Membrane potential and ion channels in isolated outer hair cells of guinea pig cochlea. J Otorhinolaryngol Relat Spec 48:68–75

    CAS  Google Scholar 

  158. Gitter AH, Zenner HP (1988) Auditory transduction steps in single inner and outer hair cells. In: Duifhuis H, Horst JW, Wit HP (eds) Basic issues in hearing. Academic Press, London, pp 32–41

    Google Scholar 

  159. Gitter AH, Zenner HP (1988) Mikrochirurgisch gewonnene lebende innere Haarzellen erlauben Messungen von Ionenkanälen und Zellpotential. Laryngol Rhinol Otol (Stuttg) 67:611–615

    CAS  Google Scholar 

  160. Gitter AH, Klinke R (1989) Die Energieschwellen von Auge und Ohr in heutiger Sicht. Naturwissenschaften 76:160–164

    Google Scholar 

  161. Gitter AH, Frömter E, Zenner HP (1992) C-potassium channels in the lateral wall membrane of guinea pig outer hair cells. Hear Res 60:13–19

    PubMed  CAS  Google Scholar 

  162. Godfrey DA, Carter JA, Berger SI, Matschinsky FM (1976) Levels of putative transmitter amino acids in the guinea pig cochlea. J Histochem Cytochem 24:468–470

    PubMed  CAS  Google Scholar 

  163. Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond (Biol) 135:492–498

    Google Scholar 

  164. Goldmann WJ, Bielinski TC, Mattis PA (1973) Cochlear microphonic potential response of the dog to diuretic compounds. Toxicol Appl Pharmcol 25:259–266

    Google Scholar 

  165. Goldstein AJ, Mizukoshi O (1967) Separation of the organ of Corti into its component cells. Ann Otol Rhinol Larnygol 76:414–426

    CAS  Google Scholar 

  166. Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1-f2. Proc IEEE 56:981–999

    Google Scholar 

  167. Gratton MA, Salvi RJ, Kamen BA, Saunders SS (1990) Interaction of cisplatin and noise on the peripheral auditory system. Hear Res 50:221–224

    Google Scholar 

  168. Gulley RL, Reese TS (1977) Regional spezialization of the hair cell plasmalemma in the organ of corti. Anat Rec 189:109–123

    PubMed  CAS  Google Scholar 

  169. Gummer AW, Hemmert W, Morioka I, Reis P, Reuter G, Zenner HP (1993) Cellular motility measured in the guinea-pig cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific, Singapore, pp 229–239

    Google Scholar 

  170. Hackney CM, Furness DN, Mahendrasingam S (1993) The mechano-transduction channels in cochlear hair cells may be released by antibodies which recognize other amiloride-sensitive channels. In: Duifhuis H, Horst JW, Dijk P, Netten SM van (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific, Singapore, pp 107–115

    Google Scholar 

  171. Hallpike CS, Cairns H (1938) Observations on the pathology of Ménière’s syndrome. Proc R Soc Med 31:1317–1336

    PubMed  CAS  Google Scholar 

  172. Hamill OP, Lane JW, McBride DW (1992) Amiloride: a molecular probe for mechanosensitive channels. Trends Pharmacol Sci 13:373–376

    PubMed  CAS  Google Scholar 

  173. Harris FP (1990) Distortion-product otoacoustic emissions in humans with high frequency sensorineural hearing loss. J Speech Hear Res 33:594–600

    PubMed  CAS  Google Scholar 

  174. Harris FP, Lonsbury-Martin BL, Stagner BB, Coats AC, Martin GK (1989) Acoustic distortion products in humans: systematic changes in amplitudes as a function of f2/f1 ratio. J Acoust Soc Am 85:220–229

    PubMed  CAS  Google Scholar 

  175. Harris FP, Probst R (1992) Transiently evoked otoacoustic emissions in patients with Ménière’s disease. Acta Otolaryngol (Stockh) 112:36–44

    CAS  Google Scholar 

  176. Harris FP, Probst R, Plinkert P, Xu L (1993) Influence of interference tones on 2f1-f2 acoustic distortion products. In: Duifhuis H, Horst JW, Dijk Netten van SM (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific Singapore, pp 87–93

    Google Scholar 

  177. Hauser R (1992) Die Wirkung der systematischen Mittelohrdruckänderung auf transitorisch evozierte otoakustische Emissionen — eine Druckkammerstudie. Laryngol Rhinol Otol (Stuttg) 71:632–636

    CAS  Google Scholar 

  178. Hauser R, Probst R (1991) The influence of systematic primary tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears. J Acoust Soc Am 89:280–286

    PubMed  CAS  Google Scholar 

  179. Hauser R, Probst R, Harris P (1991) Die klinische Anwendung otoakustischer Emissionen kochleärer Distorsions-produkte. Laryngo Rhino Otol (Stuttg) 70:123–131

    CAS  Google Scholar 

  180. Hauser R, Probst R, Harris FP (1993) Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears. Hear Res 69:133–145

    PubMed  CAS  Google Scholar 

  181. Hawkins JE Jr. (1976) Drug ototoxicity. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. Vol. V: Auditory system. Springer, Berlin Heidelberg New York, pp 707–748

    Google Scholar 

  182. Hayashida T, Hiel H, Dulon D, Erre JP, Guilhaume A, Aran JM (1989) Dynamic changes following combined treatment with gentamicin and ethacrynic acid with and without acoustic stimulation. Acta Otolaryngol (Stockh) 108:404–413

    CAS  Google Scholar 

  183. Hazell JWP (1987) A cochlear model for tinnitus. In: Feldmann H (Hrsg) Proc III International Tinnitus Seminar, Münster. Harsch, Karlsruhe, pp 121–128

    Google Scholar 

  184. Heidland H, Wigand ME (1970) The effects of furosemide at high doses on auditory sensitivity in patients with uremia. Klin Wochenschr 48:1052–1056

    PubMed  CAS  Google Scholar 

  185. Helmholtz H (1870) Die Lehre von den Tonempfindungen, als physiologische Grundlage für die Theorie der Musik. Vieweg 8c Sohn, Braunschweig

    Google Scholar 

  186. Hemmert W, Morioka I, Reuter G, Zenner HP, Gummer AW (im Druck) Akustisch und elektrisch induzierte Bewegungen zellulärer Strukturen im Cortischen Organ des Meerschweinchens DAGA 1994

    Google Scholar 

  187. Hinz M, Wedel H von (1984) Otoakustische Emissionen bei Patienten mit Hörsturz. Arch Otorhinolaryngol [Suppl II]:128–130

    Google Scholar 

  188. Hodgkin AL, Horowicz P (1960) Potassium contractures in single muscle fibers. J Physiol (Lond) 153:386–403

    CAS  Google Scholar 

  189. Hoffmann DW, Rubio JA, Altschuler RA, Fex J (1984) Several distinct receptor binding enkephalins in olivocochlear fibers and terminals in the organ of Corti. Brain Res 322:59–65

    Google Scholar 

  190. Hoffman DW, Zamir N, Rubio JA, Altschuler RA, Fex J (1985) Proenkephalin and prodynorphin-related neuropeptides in the cochlea. Hear Res 17:47–50

    PubMed  CAS  Google Scholar 

  191. Hoffman DW, Whitworth CA, Jones KL, Rybak LP (1987) Nutritional status, glutathione levels, and ototoxicity of loop diuretics and aminoglycoside antibiotics. Hear Res 31:217–222

    PubMed  CAS  Google Scholar 

  192. Hoffman DW, Jones-King KL, Altschuler RA (1988) Putative neurotransmitters in the rat cochlea at several ages. Brain Res 460:366–368

    PubMed  CAS  Google Scholar 

  193. Hoffman DW, Edkins RD, Jones-King KL (1989) Release of enkephalins and dynorphins at the olivocochlear synapses in the cochlear. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 344

    Google Scholar 

  194. Hoffman DW, Gardner PD, Altschuler RA (1992) Localization of enkephalin-synthesizing cells in rat auditory brainstem by in-situ hybridization. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 12

    Google Scholar 

  195. Holley MC, Ashmore JF (1988) On the mechanism of a high-frequency force generator in outer hair cells isolated from the guinea pig cochlea. Proc R Soc Lond (Biol) 232:413–429

    CAS  Google Scholar 

  196. Holley MC, Ashmore JF (1990) Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair cells. J Cell Sci 96:283–291

    PubMed  CAS  Google Scholar 

  197. Holley MC, Kalinec F, Kachar B (1992) Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci 102:569–580

    PubMed  Google Scholar 

  198. Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bull-frog characterized by noise analysis. J Physiol (Lond) 375:195–227

    CAS  Google Scholar 

  199. Horner KC (1991) Old theme and new reflections: Hearing impairment associated with endolymphatic hydrops. Hear Res 52:147–156

    PubMed  CAS  Google Scholar 

  200. Horner KC, Guillaume A, Cazals Y (1989) Atrophy of short and middle sterocilia on outer hair cells of guinea pig cochleas with experimentally induced hydrops. Hear Res 32:41–48

    Google Scholar 

  201. Horner KC, Cazals Y (1989) Distortion products in early stage experimental hydrops in the guinea pig. Hear Res 43:71–80

    PubMed  CAS  Google Scholar 

  202. Horst JW, Wit HP, Ritsma RJ (1983) Psychophysiological aspects of cochlear acoustic emissions. In: Klinke R, Hartmann R (eds) Hearing — physiological bases and psychophysics. Springer, Berlin Heidelberg New York Tokyo pp 89–96

    Google Scholar 

  203. Hostetier KY, Hall LB (1982) Aminoglycoside antibiotics inhibit lysosomal phospholipase A and C from rat liver in vitro. Bioch Biophys Acta 710:506–509

    Google Scholar 

  204. Hoth S (1993) Klinische Anwendung der transitorisch evozierten otoakustischen Emissionen zur therapiebegleitenden Verlaufskontrolle. HNO 41:135–145

    PubMed  CAS  Google Scholar 

  205. Hoth S, Lenarz T (1993) Otoakustische Emissionen — Grundlagen und Anwendung. Thieme, Stuttgart

    Google Scholar 

  206. Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc R Soc Lond (Biol) 244:161–167

    CAS  Google Scholar 

  207. Housley GD, Batcher S, Kraft M, Ryan AF (1992) Detection of an acetylcholine receptor in the rat inner ear using polymerase chain reaction. Proc Symp Mol Biol Hearing and Deafness, La Jolla/CA, p 48

    Google Scholar 

  208. Huang MY, Schacht J (1989) Drug-induced ototoxicity: Pathogenesis and prevention. Med Toxicol Adv Drug Exp 4:452–467

    CAS  Google Scholar 

  209. Huang PL, Corey DP (1990) Calcium influx into hair cell stereocilia: further evidence for transduction channels at the tips. Biophys J 57 [Suppl]:530a

    Google Scholar 

  210. Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. Eur J Neurosci 2:1–10

    CAS  Google Scholar 

  211. Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404

    PubMed  CAS  Google Scholar 

  212. Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411

    PubMed  CAS  Google Scholar 

  213. Hunter-Duvar IM (1977) Morphology of the normal and the acoustically damaged cochlea. SEM 2:421–428

    Google Scholar 

  214. Ishii T, Bernstein J, Balogh K (1967) Distribution of tritiumlabelled salicylate in the cochlea. Ann Otol Rhinol Laryngol 76:368–476

    PubMed  CAS  Google Scholar 

  215. Ishii D, Balogh K (1968) Distribution of efferent nerve endings in the organ of Corti. Their graphic reconstruction in cochleae by localization of acetylcholinesterase activity. Acta Otolaryngol (Stockh) 66:282–288

    CAS  Google Scholar 

  216. Iurato S (1974) Efferent innervation of the cochlea. In: Keidel WC, Neff WD (eds) Handbook of sensory physiology. Vol V/1. Springer, Berlin Heidelberg New York, pp 261–282

    Google Scholar 

  217. Iurato S, Luciano L, Pannese E, Reale E (1971) Acetylcholinesterase activity in the inner ear. Acta Otolaryngol Suppl (Stockh) 279:1–50

    CAS  Google Scholar 

  218. Iwasa K, Kachar B (1989) Fast in vitro movement of outer hair cells in an external electric field: effect of digitonin, a membrane permeabilizing agent. Hear Res 40:247–254

    PubMed  CAS  Google Scholar 

  219. Jahnke K (1977) Zur Pathogenese der akuten Symptome des Morbus Ménière. Laryngol Rhinol Otol (Stuttg) 56:402–406

    CAS  Google Scholar 

  220. Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7:409–420

    PubMed  CAS  Google Scholar 

  221. Jarlstedt J, Bagger-Sjöbäck D (1977) Gentamicin-induced changes in RNA content in sensory and ganglionic cells in the hearing organ of the lizard Calotes versicolor: A cytochemical and morphological investigation. Acta Otolaryngol 84:361–369

    PubMed  CAS  Google Scholar 

  222. Jasser A, Guth PS (1973) The synthesis of acetylcholine by the olivo-cochlear bundle. J Neurochem 20:45–53

    PubMed  CAS  Google Scholar 

  223. Jen DH, Steele CR (1987) Electrokinetic model of cochlear hair cell motility. J Acoust Soc Am 82:1667–1678

    PubMed  CAS  Google Scholar 

  224. Jenison GL, Bobbin RP (1985) Quisqualate excites spiral ganglion neurons of the guinea pig. Hear Res 20:261–265

    PubMed  CAS  Google Scholar 

  225. Jenison GL, Winbery S, Bobbin RP (1986) Comparative actions of quisqualate and N-methy-D-aspartate, excitatory amino acid agonists, on guinea pig cochlear potentials. Comp Biochem Physiol 84:385–389

    CAS  Google Scholar 

  226. Johnsen NL, Elberling C (1982) Evoked acoustic emissions from the human ear. I. Equipment and response parameters. Scand Audiol 11:3–12

    PubMed  CAS  Google Scholar 

  227. Johnsen NJ, Elberling C (1982) Evoked acoustic emissions from the human ear. II. Normative data in adults and influence of posture. Scand Audiol 11:69–77

    PubMed  CAS  Google Scholar 

  228. Jones K, Tubis A, Long GR, Burns EM, Strickland EA (1986) Interactions among multiple spontaneous otoacoustic emissions. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer, Berlin Heidelberg New York Tokyo pp 266–273

    Google Scholar 

  229. Jones N, Fex J, Altschuler RA (1987) Tyrosine hydroxylase immunoreactivity identifies possible catecholaminergic fibers in the organ of Corti. Hear Res 30:33–38

    PubMed  CAS  Google Scholar 

  230. Jorgensen F, Ohmori H (1988) Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J Physiol (Lond) 403:577–588

    CAS  Google Scholar 

  231. Jung T, Miller S, Mowery G et al. (1991) Effect of leukotriene inhibitor (I-663536) on metabolites in salicylate ototoxicity. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 73

    Google Scholar 

  232. Jung T, Park Y, Miller S et al. (1992) Effect of exogenous arachidonic acid metabolites applied on round window membrane on hearing and their levels in the perilymph. Acta Otolaryngol (Stockh) 493 [Suppl]:171–176

    CAS  Google Scholar 

  233. Jung TTK, Rhee CK, Lee CS, Park YS, Choi DC (1993) Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs and quinine. Otolaryngol Clin North Am 26:791–810

    PubMed  CAS  Google Scholar 

  234. Kachar B, Brownell WE, Altschuler RA, Fex J (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:365–368

    PubMed  CAS  Google Scholar 

  235. Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci USA 89:8671–8675

    PubMed  CAS  Google Scholar 

  236. Kalinec F, Jaeger RG, Kachar B (1993) Mechanical coupling of the outer hair cell membrane to the cortical cytoskeleton by anion exchanger and 4.1 proteins. In: Duifhuis H, Horst JW, Dijk P van, Netten SM van (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific Singapore, pp 175–181

    Google Scholar 

  237. Keiner S, Zimmermann U (im Druck) Glutathione inhibits the effects of gentamicin in outer hair cell (QHC) of guinea pig cochlea. ORL 250

    Google Scholar 

  238. Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    PubMed  CAS  Google Scholar 

  239. Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45

    PubMed  CAS  Google Scholar 

  240. Kemp DT (1980) Towards a model for the origin of cochlear echoes. Hear Res 2:533–548

    PubMed  CAS  Google Scholar 

  241. Kemp DT (1981) Physiologically active cochlear micromechanics — one source of tinnitus. In: Tinnitus. Ciba Foundation Symposium, Pitman, London, pp 54–81

    Google Scholar 

  242. Kemp DT (1982) Cochlear echoes: Implications for noiseinduced hearing loss. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven, New York, pp 189–207

    Google Scholar 

  243. Kemp DT (1986) Otoacoustic emissions, travelling wave and cochlear mechanisms. Hear Res 23:95–104

    Google Scholar 

  244. Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions — two-tone suppression. In: Van den Brink RM, Bilsen FA (eds) Psychophysical, physiological and behavioral studies in hearing, Elft Univ. Press, Delft, pp 34–42

    Google Scholar 

  245. Kemp DT, Brown AM (1984) Ear canal acoustic and round window electrical correlates of 2f1-f2 distorsion generated in the cochlea. Hear Res 13:39–46

    PubMed  CAS  Google Scholar 

  246. Kemp DT, Bray P, Alexander L, Brown AM (1986) Acoustic emission cochleography — practical aspects. Scand Audiol 25 [Suppl] 71–82

    CAS  Google Scholar 

  247. Kemp DT, Ryan S, Bray P (1990) A guide to the effective use of otoacoustic emissions. Ear Hear 11:93–105

    PubMed  CAS  Google Scholar 

  248. Khanna SM (1989) Cellular vibration and motility in the organ of Corti. Acta Otolaryngol 467 [Suppl] 11–279

    Google Scholar 

  249. Khanna SM, Leonhard DG (1982) Laser interferometric measurements of basilar membrane vibrations in cats. Science 215:305–306

    PubMed  CAS  Google Scholar 

  250. Kiang NYS, Moxon EC, Levine RA (1970) Auditory-nerve activity in cats with normal and abnormal cochlea. In: Wolstenholme EGW, Knight J (eds) Sensorineural hearing loss. Livingstone, New York, pp 241–268

    Google Scholar 

  251. Kim DO (1980) Cochlear mechanics: Implication of electrophysiological and acoustical observations. Hear Res 2:297–317

    PubMed  CAS  Google Scholar 

  252. Kim DO (1986) Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hear Res 22:105–114

    PubMed  CAS  Google Scholar 

  253. Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in earcanal pressure. J Acoust Soc Am 67:1704–1721

    PubMed  CAS  Google Scholar 

  254. Kimura RS (1982) Animal models of endolymphatic hydrops. Am J Otolaryngol 3:447–451

    PubMed  CAS  Google Scholar 

  255. Klinke R (1981) Neurotransmitters in the cochlea and the cochlear nucleus. Acta Otolaryngol (Stockh) 91:541–554

    CAS  Google Scholar 

  256. Klinke R (1986) Neurotransmission in the inner ear. Hear Res 22:235–243

    PubMed  CAS  Google Scholar 

  257. Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54:316–357

    PubMed  CAS  Google Scholar 

  258. Klinke R, Oertel W (1977) Evidence that GABA is not the afferent transmitter in the cochlea. Exp Brain Res 28:311–314

    PubMed  CAS  Google Scholar 

  259. Knipper M, Zimmermann U, Köpschall I, Rohbock K, Jüngling S, Zenner HP (im Druck) Immunological identification of candidate proteins involved in regulating proteins of isolated outer hair cells. Hear Res

    Google Scholar 

  260. Koch T, Gloddek B (1991) Inhibition of adenylate-cyclase-coupled G protein complex by ototoxic diuretics and cisplatinum in the inner ear of the guinea pig. Eur Arch Otorhinolaryngol 248:459–464

    PubMed  CAS  Google Scholar 

  261. Komune S, Asakuma S, Snow JB (1981) Pathophysiology of ototoxicity of cis-diaminedichloroplatinum. Otolaryngol Head Neck Surg 89:275–282

    PubMed  CAS  Google Scholar 

  262. Konishi T (1979) Some observations on negative endo-cochlear potential during anoxia. Acta Otolaryngol 87:506–516

    PubMed  CAS  Google Scholar 

  263. Konishi T, Gupta BN, Prazma J (1983) Ototoxicity of cisdichlorodiamine platinum (II) in guinea pigs. Am J Otolaryngol 4:18–26

    PubMed  CAS  Google Scholar 

  264. Kroese ABA, Das A, Hudspeth AJ (1989) Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hear Res 37:203–218

    PubMed  CAS  Google Scholar 

  265. Kros CJ, Rüsch A, Richardson GP (1982) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc R Soc Lond B 249:185–193

    Google Scholar 

  266. Kujawa SG, Fallon M, Bobbin RP (1992) Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear Res 64:73–80

    PubMed  CAS  Google Scholar 

  267. Kumpf W, Hoke M (1970) Ein konstantes Ohrgeräusch bei 4 000 Hz. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 196:243–247

    PubMed  CAS  Google Scholar 

  268. Kuriyama H, Shiosaka S, Sekitani M, Tohyama Y et al. (1990) Electron microscopic observation of calcitonin gene-related peptide-like immunoreactivity in the organ of Corti of the rat. Brain Res 517:76–80

    PubMed  CAS  Google Scholar 

  269. Lamprecht A (1991) Evozierte otoakustische Emissionen bei normalhörenden und schwerhörigen Erwachsenen und Kindern. Laryngol Rhinol Otol (Stuttg) 70:1–4

    CAS  Google Scholar 

  270. Laubert A, Lehnhardt E (1993) Hörstörungen im Alter. In: Platt D, Haid T (Hrsg) Handbuch der Gerontologie. 6 Hals-Nasen-Ohren-Heilkunde. Fischer, Stuttgart, S 130–166

    Google Scholar 

  271. Laurell G, Bagger-Sjöbäck D (1991) Degeneration of the organ of Corti following intravenous administration of cisplatin. Acta Otolaryngol (Stockh) 111:891–898

    CAS  Google Scholar 

  272. Lazarides E, Revel JP (1979) The molecular basis of cell movement. Sci Am 240:100–113

    PubMed  CAS  Google Scholar 

  273. Lehnhardt E (1984) Klinik der Innenohrschwerhörigkeit. Arch Otorhinolaryngol 58[Suppl I]:58–218

    Google Scholar 

  274. Lehnhardt E, Koch T (1994) Altersschwerhörigkeit. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg.) Oto-Rhino-Laryngologie in Praxis und Klinik. Thieme, Stuttgart, S. 778–782

    Google Scholar 

  275. Lenoir M, Puel JL (1987) Dose-dependent changes in the rat cochlea following aminoglycoside intoxication. II. Histological study. Hear Res 26:199–209

    PubMed  CAS  Google Scholar 

  276. LePage EW, Johnstone BM (1980) Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea. Hear Res 2:183–189

    CAS  Google Scholar 

  277. Letens U (1988) Über die Interpretation von Impedanzmessungen im Gehörgang anhand von Mittelohrmodellen. Disseration, Bochum

    Google Scholar 

  278. Levitan ES, Schofield PR, Burt R et al. (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79

    PubMed  CAS  Google Scholar 

  279. Liberman MC (1990) Effects of chronic cochlear de-afferentation on auditory-nerve response. Hear Res 49:209–224

    PubMed  CAS  Google Scholar 

  280. Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53

    PubMed  CAS  Google Scholar 

  281. Liberman MC, Dodds LW (1984) Single-neuron labelling and chronic cochlear pathology. III. Sterocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

    PubMed  CAS  Google Scholar 

  282. Lim DJ (1986) Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review. Am J Otolaryngol 7:73–99

    PubMed  CAS  Google Scholar 

  283. Lim DJ, Melnick W (1971) Acoustic damage of the cochlea. Arch Otolaryngol 94:294–305

    PubMed  CAS  Google Scholar 

  284. Lim DJ, Freilich IW (1981) Ultrastucture of the stria vascularis, vestibular dark cells and endolymphatic sac following acute diuretic ototoxicity. Scand Audiol 14 [Suppl]:139–155

    Google Scholar 

  285. Lim DJ (1986) Functional structure of the organ of Corti: review. Hear Res 22:117–146

    PubMed  CAS  Google Scholar 

  286. Lim DJ, Hanamure Y, Ohashi Y (1989) Structural organization of the outer hair cell wall. Acta Otolaryngol (Stockh) 107:398–405

    CAS  Google Scholar 

  287. Long G, Comis SC (1979) The effect of potassium on the activity of auditory nerve fibers of the guinea pig cochlea. Acta Otolaryngol (Stockh) 87:39–46

    Google Scholar 

  288. Long GR (1988) Modification of spontaneous and evoked otoacustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353

    PubMed  CAS  Google Scholar 

  289. Long GR, Tubis A (1988) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353

    PubMed  CAS  Google Scholar 

  290. Lonsbury-Martin BL, Martin GK, Probst R, Coats AC (1987) Acoustic distorsion products in rabbit ear canal. I. Basic features and physiological vulnerability. Hear Res 28:173–189

    PubMed  CAS  Google Scholar 

  291. Lonsbury-Martin BL, Harris FP, Stagner BB, Hawkin MD, Martin GK (1990) Distorsion product emission in humans, I. Basic properties in normally hearing subjects. Ann Otol Rhinol Laryngol 147 [Suppl]:3–14

    CAS  Google Scholar 

  292. Lu YF (1987) Cause of 611 deaf mutes in schools for deaf children in Shanghai. Shanghai Med J 10:159

    Google Scholar 

  293. Luna EJ, Hitt AL (1992) Cytoskeleton-plasma membrane interactions. Science 258:955–963

    PubMed  CAS  Google Scholar 

  294. Lutman ME, Mason SM, Sheppard S, Gibbin KP (1989) Differential diagnostic potential of otoacoustic emissions: a case study. Audiology 28:205–210

    PubMed  CAS  Google Scholar 

  295. Mahe JF, Schreiner GE (1965) Studies on ethacrynic acid in patients with refractory edema. Ann Intern Med 62:15–29

    Google Scholar 

  296. Martin GK, Lonsbury-Martin BL, Probst R, Coats AC (1987) Acoustic distorsion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and puretone exposures. Hear Res 28:191–208

    PubMed  CAS  Google Scholar 

  297. Martin GK, Lonsbury-Martin BL, Probst R, Coats AC (1988) Spontaneous otoacoustic emissions in a nonhuman primate. I. Basic features and relations to other emissions. Hear Res 33:49–68

    PubMed  CAS  Google Scholar 

  298. Martin GK, Ohlms LA, Franklin DJ, Harris FP, Lonsbury-Martin BL (1990) Distortion product emissions in humans. III. Influence of sensorineural hearing loss. Ann Otol Rhinol Laryngol 99:30–42

    Google Scholar 

  299. Mathis A, DeMin N, Arnold W (1991) Transitorisch-evo-zierte otoakustische Emissionen (TEOAE) bei isolierten Hochton-, Tieften-bzw. Mitteltongehör. HNO 39:55–60

    PubMed  CAS  Google Scholar 

  300. McAlpine D, Johnstone BM (1990) The ototoxic mechanism of cisplatin. Hear Rés 47:191–204

    PubMed  CAS  Google Scholar 

  301. McFadden D, Plattsmier HS, Pasanen EG (1984) Aspirin-induced hearing loss as a model of sensorineural hearing loss. Hear Res 16:251–260

    PubMed  CAS  Google Scholar 

  302. McFadden, Plattsmier HS (1984) Aspirin abolishes spontaneous otoacoustic emissions. J Acoust Soc Am 76:443–448

    PubMed  CAS  Google Scholar 

  303. McGinn MD (1982) The effects of neonatal acoustic deprivation on the auditory neocortex of the mongolian gerbil, Meriones unguicultus. Thesis, University of California

    Google Scholar 

  304. Mees K (1986) Medikament-Nebenwirkungen auf das Hörorgan. Laryngol Rhinol Otol (Stuttg) 65:363–370

    CAS  Google Scholar 

  305. Merchan-Perez A, Gil-Loyzaga P, Eybalin M (1990) Ontogeny of GAD-and GABA immunoreactivities in the rat cochlea. Eur Arch Otorhinolaryngol 248:4–7

    PubMed  CAS  Google Scholar 

  306. Möhler H, Malherbe P, Sequier JM, Bannwarht W, Schoch P, Richards JG (1989) Location, structure, and sites of synthesis of the GABAA receptor in the central nervous system. In: Barnard EA, Costa E (eds) Allosteric modulation of amino acid receptors: therapeutic implications. Raven, New York, pp 31–46

    Google Scholar 

  307. Morgenstern C (1985) Pathophysiologie, Klinik und konservative Therapie der Ménièreschen Erkrankung. Arch Otorhinolaryngol 1 [Suppl]:1–66

    CAS  Google Scholar 

  308. Morgenstern C (1994) Morbus Ménière. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Praxis und Klinik. Thieme, Stuttgart, pp 768–775

    Google Scholar 

  309. Mountain CD (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alters cochlear mechanics. Science 210:71–72

    PubMed  CAS  Google Scholar 

  310. Myers EN, Bernstein JM (1965) Salicylate ototoxicity. Arch Otolaryngol 82:483–493

    PubMed  CAS  Google Scholar 

  311. Nadol JB Jr. (1983) Serial section reconstruction of the neural poles of the hair cells in the human organ of Corti. I. Inner hair cell. Laryngoscope 93:599–614

    PubMed  Google Scholar 

  312. Naeve SL, Margolis RH, Levine SC, Fournier EM (1992) Effect of ear-canal pressure on evoked otoacoustic emissions. J Acoust Soc Am 91:2091–2095

    PubMed  CAS  Google Scholar 

  313. Nakagawa T, Kakehata S, Akaike N et al. (1992) Effects of Ca2+ antagonists and aminoglycoside antibiotics on Ca2+ current in isolated outer hair cells of guinea pig cochlea. Brain Res 580:345–347

    PubMed  CAS  Google Scholar 

  314. Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123–130

    PubMed  CAS  Google Scholar 

  315. Niedzielski A, Ono T, Schacht J (1992) Cholinergic regulation of the phosphoinositide second messenger system in the guinea pig organ of Corti. Hear Res 59:250–254

    PubMed  CAS  Google Scholar 

  316. Nilles R (1994) Zur Hemmung von Kalziumkanälen in Haarzellen des Innenohres. Med. Dissertation, Universität Tübingen

    Google Scholar 

  317. Norris CH, Guth PS (1974) The release of acetylcholine by the olivo-cochlear bundle (COCB). Acta Otolaryngol (Stockh) 77:318–326

    CAS  Google Scholar 

  318. Norton SJ, Champlin CA, Mott JB (1987) The behaviour of spontaneous otoacoustic emissions from human ears following exposure to intense pur-tone stimuli. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 21

    Google Scholar 

  319. Norton SJ, Schmidt AR, Stover LJ (1990) Tinnitus and otoacoustic emissions: Is there a link? Ear Hear 11:159–166

    PubMed  CAS  Google Scholar 

  320. Oeken J, Müller H (1994) Einsatz von DPOAE in der Begutachtung chronischer Lärmschäden. Eur Arch Otorhinolaryngol Suppl II:39–40

    Google Scholar 

  321. Oertel W (1978) Transmitterphysiologie der afferenten und efferenten Synapsen des Corti’schen Organs der Katze: Experimentelle Untersuchungen und Literaturübersicht. Med. Dissertation, Freie Universität Berlin

    Google Scholar 

  322. Offner FF, Dallos P, Cheatham MA (1987) Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis. Hear Res 29:117–124

    PubMed  CAS  Google Scholar 

  323. Ohmori H (1987) Gating properties of the mechano-electrical transducer channel in the dissociated vestibular hair cell of the chick. J Physiol 387:589–609

    PubMed  CAS  Google Scholar 

  324. Ohmori H (1988) Mechanical stimulation and FURA-2 fluorescence in the hair bundle of dissociated hair cells of the chick. J Physiol (Lond) 399:115–137

    CAS  Google Scholar 

  325. Ohmori H (1991) Mechano-electrical transduction in the chicken hair cell. Acta Otolaryngol (Stockh) 481 [Suppl]:1–4

    CAS  Google Scholar 

  326. Orman S, Flock A (1983) Active control of sensory hair mechanics implied by susceptibility to media that induce contraction in muscle. Hear Res 11:261–266

    PubMed  CAS  Google Scholar 

  327. Penner MJ, Burns EM (1987) The dissociation of SOAEs and tinnitus. J Speech Hear Res 30:396–403

    PubMed  CAS  Google Scholar 

  328. Penner MH, Burns EM (1987) Five empirical tests for a relation between SOAEs and tinnitus. In: Feldmann H, Proc III International Tinnitus Seminar Münster. Harsch, Karlsruhe, pp 82–85

    Google Scholar 

  329. Perez ME, Soto E, Vega R (1991) Streptomycin blocks the postsynaptic effects of excitatory amino acids on vestibular system primary afférents. Brain Res 563:221–226

    PubMed  CAS  Google Scholar 

  330. Pickles JO, Comis SC, Osborne MP (1984) Cross-links between stereocilia in the guinea-pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–111

    PubMed  CAS  Google Scholar 

  331. Pickles JO, Comis SD, Osborne MP (1987) The effect of chonic application of kanamycin on stereocilia and their tip links in hair cells of the guinea pig cochlea. Hear Res 29:237–244

    PubMed  CAS  Google Scholar 

  332. Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. TINS 7:254–259

    Google Scholar 

  333. Pike D, Bosher SK (1980) The time course of the strial changes produced by intravenous furosemide. Hear Res 3:79–89

    PubMed  CAS  Google Scholar 

  334. Plester D (1978) Die einseitige Hörstörung. Arch Otorhinolaryngol 219:451–459

    PubMed  CAS  Google Scholar 

  335. Plinkert PK (1989) Cholinerge Innervation äußerer Haarzellen — Eine mögliche Bedeutung für den Diskriminationsverlust bei Perzeptionsschwerhörigkeiten. Laryngol Rhinol Otol (Stuttg) 68:450–455

    CAS  Google Scholar 

  336. Plinkert PK, Möhler H, Zenner HP (1989) A subpopulation of outer hair cells possess GABA-receptors with tonotopic organization. Eur Arch Otorhinolaryngol 246:417–422

    CAS  Google Scholar 

  337. Plinkert PK, Sesterhenn G, Arold R, Zenner HP (1990) Evaluation of otoacoustic emissions in high-risk infants as an easy and rapid objective auditory screening method. Eur Arch Otorhinolaryngol 247:356–360

    PubMed  CAS  Google Scholar 

  338. Plinkert PK, Gitter AH, Zenner HP (1990) Tinnitus-associated spontaneous otoacoustic emissions — Active outer hair cell movements as common origin? Acta Otolaryngol (Stockh) 110:342–347

    CAS  Google Scholar 

  339. Plinkert PK, Gitter AH, Zimmermann U, Kirchner T, Tzartos S, Zenner HP (1990) Visualization and functional testing of acetylcholine receptors in cochlear outer hair cells. Hear Res 44:25–34

    PubMed  CAS  Google Scholar 

  340. Plinkert PK, Arold R, Zenner HP (1990) Evozierte otoakustische Emissionen zum Hörscreening bei Säuglingen. Laryngo Rhino Otol (Stuttg) 69:108–110

    CAS  Google Scholar 

  341. Plinkert PK, Zenner HP (1991) Characterization and tonotopic Organization of postsynaptic receptors on mammalian outer hair cells. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 88

    Google Scholar 

  342. Plinkert PK, Kröber S (1991) Früherkennung einer Cisplatin-Ototoxizität durch evozierte otoakustische Emissionen. Laryngol Rhinol Otol (Stuttg) 70:457–462

    CAS  Google Scholar 

  343. Plinkert PK, Zenner HP, Heilbronn E (1991) A nicotinic acetylcholine receptor-like α-Bungarotoxin-binding site on outer hair cells. Hear Res 53:1–130

    Google Scholar 

  344. Plinkert PK, Plinkert B, Zenner HP (1992) Carbohydrates in the cell surface of hair cells from the guinea pig cochlea. Eur Arch Otorhinolaryngol 249:67–73

    PubMed  CAS  Google Scholar 

  345. Plinkert PK, Lenarz T (1992) Evozierte otoakustische Emissionen und ihre Beeinflussung durch kontralaterale akustische Stimulation. Laryngol Rhinol Otol (Stuttg) 71:74–78

    CAS  Google Scholar 

  346. Plinkert PK, Zenner HP (1992) Sprachverständnis und otoakustische Emissionen durch Vorverarbeitung des Schalls im Innenohr. HNO 40:111–122

    PubMed  CAS  Google Scholar 

  347. Plinkert PK, Gitter AH, Möhler H, Zenner HP (1993) Structure, pharmacology and function of GABAA receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol 250:351–357

    PubMed  CAS  Google Scholar 

  348. Plinkert PK, Harris FP, Probst R (1993) Der Einsatz akustischer Distorsionsprodukte zur klinischen Diagnostik: Der Entstehungsort ihrer otoakustischen Emissionen im Innenohr. HNO 41:339–344

    PubMed  CAS  Google Scholar 

  349. Plinkert PK, Zenner HP (1994) Aspekte der Physiologie und Pathophysiologie der Schallverarbeitung im Innenohr bei Lärmexposition. In: Dieroff HG (Hrsg) Lärmschäden des Innenohres. Fischer, Jena, S. 163–186

    Google Scholar 

  350. Plinkert PK, Bootz F, Voßieck T (1994) Influence of static middle ear pressure on transiently evoked otoacoustic emissions and distortion products. Eur Arch Otorhinolaryngol 251:95–99

    PubMed  CAS  Google Scholar 

  351. Plinkert PK, Ptok M, Zenner HP (1994) Veränderungen von transitorisch evozierten otoakustischen Emissionen und akustischen Distorsionsprodukten bei Tubenventilationsstörungen. HNO 42:434–440

    PubMed  CAS  Google Scholar 

  352. Plinkert PK, Zimmermann U, Zenner HP (1994) Active displacement of the organ of Corti following endoperilymphatic ion dysequilibrium. In: Barbara M (ed) Proc Intl Symp Ménière’s Disease 1993, Rome. Kugler, Amsterdam

    Google Scholar 

  353. Plinkert PK, Hemmert W, Zenner HP (1995) Methodenvergleich des Innenohrs — Amplitudenreduktion otoakustischer Emissionen am empfindlichsten bei subriskanter Impulsschallreizung. HNO 43(2):89–97

    PubMed  CAS  Google Scholar 

  354. Plomp R (1965) Detectability thresholds for combination tones. J Acoust Soc Am 37:1110–1123

    PubMed  CAS  Google Scholar 

  355. Prazma J (1981) Ototoxicity of aminoglycoside antibiotics. In: Brown RD, Daigneault EA (eds) Pharmacology of hearing. Wiley, New York, pp 153–195

    Google Scholar 

  356. Preyer S, Pfister M, Hemmert W (1993) Mechanische Reizung isolierter äußerer Haarzellen als Testsystem. HNO 41:471–474

    PubMed  CAS  Google Scholar 

  357. Preyer S, Hemmert W, Pfister M, Zenner HP, Gummer AW (im Druck) Frequency response of mature guinea-pig outer hair cells to sterociliary displacement. Hear Res

    Google Scholar 

  358. Probst R (1990) Otoacoustic emissions: an overview. In: Pfaltz CR (ed) New aspects of cochlear mechanics and inner ear pathophysiology. Adv. Otorhinolaryngol. Karger, Basel, pp 1–91

    Google Scholar 

  359. Probst R, Coats AC, Martin GK, Lonsbury-Martin BL (1986) Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hear Res 21:261–275

    PubMed  CAS  Google Scholar 

  360. Probst R, Lonsbury-Martin BL, Martin GK, Coats AC (1987) Otoacoustic emissions in ears with hearing loss. Am J Otolaryngol 8:73–81

    PubMed  CAS  Google Scholar 

  361. Probst R, Harris FP, Hauser R (1993) Clinical monitoring using otoacoustic emissions. Br J Audiol 27:85–90

    PubMed  CAS  Google Scholar 

  362. Pröschel U, Eysholdt U (1993) Evoked otoacoustic emissions in children in relation to middle ear impedance. Folia Phoniatr 45:288–294

    Google Scholar 

  363. Puel JL, Ladrech S, Chabert R, Pujol R, Eybalin M (1991) Electrophysiological evidence for the presence of NMDA receptors in the guinea pig cochlea. Hear Res 51:255–264

    PubMed  CAS  Google Scholar 

  364. Puel JL, Gervais D’Aldin C, Pujol R, Ladrech S, Eybalin M (1992) Electrophysiological effect of a dopaminergic D2 agonist (piribedil) in the guinea pig cochlea. Workshop Inner Ear Biol. Engelberg, p 57

    Google Scholar 

  365. Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18:145–152

    PubMed  CAS  Google Scholar 

  366. Pujol R, Gervais D’Aldin C, Eybalin M, Tribülac F, Puel JL (1992) Effect of a dopaminergic D2 agonist (piribedil) upon ischemia-induced neurotoxicity in the guinea pig cochlea. Workshop Inner Ear Biol, Engelberg, p 58

    Google Scholar 

  367. Quick CA, Duvall AJ (1970) Early changes in the cochlear duct from ethacrynic acid: An electron-microscopic evaluation. Laryngoscope 80:954–965

    PubMed  CAS  Google Scholar 

  368. Rajan R (1988) Effects of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Depencende on electrical stimulation parameters. J Neurophysiol 60:549–568

    PubMed  CAS  Google Scholar 

  369. Rajan R (1988) Effects of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts. J Neurophysiol 60:569–579

    PubMed  CAS  Google Scholar 

  370. Rasmussen GL [46] The olivary peduncle and other projections of the superior olivary complex. J Comp Neurol 84:141

    Google Scholar 

  371. Reiter ER, Liberman MC (1991) A protective role for olivocochlear efferents in acoustic overstimulation? Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 157

    Google Scholar 

  372. Reuter G, Zenner HP (1990) Actice radial and transverse motile responses of outer hair cells in the organ of Corti. Hear Res 43:219–230

    PubMed  CAS  Google Scholar 

  373. Reuter G, Gitter AH, Zenner HP (1990) Acetylcholine induced changes of intracellular Ca2+-levels in guinea-pig outer hair cells. In: Eisner N (ed) Brain, perception, cognition. Proc 18th Göttingen Neurobiology Conference. Thieme, Stuttgart, pp 147

    Google Scholar 

  374. Reuter G, Gitter AH, Thurm U, Zenner HP (1992) High frequency movements of the reticular lamina induced by outer hair cell motility. Hear Res 60:236–246

    PubMed  CAS  Google Scholar 

  375. Rhode WS (1974) Measurement of vibration of the basilar membrane in the squirrel monkey. Ann Otol 83:619–625

    CAS  Google Scholar 

  376. Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64:158–176

    PubMed  CAS  Google Scholar 

  377. Rollin H (1940) Zur Kenntnis des Labyrinthhydropses und des durch ihn bedingten Ménière. Hals Nasen Ohrenarzt 31:73–109

    Google Scholar 

  378. Rosen S, Bergmann M, Plester D, El-Mofty A, Satti MH (1962) Hearing loss and coronary heart disease. Arch Otorhinolaryngol 82:236–243

    Google Scholar 

  379. Rosowski JJ, Peake WT, White Jr. (1984) Cochlear nonlinearity inferred from two-tone distorsion products in the ear canal of the alligator lizard. Hear Res 13:141–158

    PubMed  CAS  Google Scholar 

  380. Ruben RJ, Rapin I (1980) Plasticity of the developing auditory system. Ann Otol Rhinol Larnygol 89:303–311

    CAS  Google Scholar 

  381. Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol (Lond) 284:261–290

    CAS  Google Scholar 

  382. Russell IJ, Cody AR, Richardson GP (1986) The responses of inner and outer hair cells in the basal turn of the guineapig cochlea grown invitro. Hear Res 22:199–216

    PubMed  CAS  Google Scholar 

  383. Russell IJ, Richardson GP (1987) The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear Res 31:9–24

    PubMed  CAS  Google Scholar 

  384. Russell IJ, Richardson GP, Kössl M (1989) The responses of cochlear hair cells to tonic displacements of the sensory hair bundle. Hear Res 43:55–70

    PubMed  CAS  Google Scholar 

  385. Rutten WLC (1980) Evoked acoustic emissions from within normal and abnormal human ears. Hear Res 2:263–271

    PubMed  CAS  Google Scholar 

  386. Rutten WLC, Buisman HP (1983) Critical behaviour of auditory oscillators near feedback phase transitions. In: de Boer E, Viergever MA (eds) Mechanisms of hearing. University Press, Delft, pp 68–75

    Google Scholar 

  387. Ryan AP, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253:44–46

    PubMed  CAS  Google Scholar 

  388. Ryan AF, Bone RC (1982) Non-simultaneous interaction of exposure to noise and kanamycin intoxication in the chinchilla. Am J Otolaryngol 3:264–272

    PubMed  CAS  Google Scholar 

  389. Ryan AF, Schwartz IR (1986) Nipecotic acid: Preferential accumulation in the cochlea by GABA uptake systems and selective retrograde transport to brainstem. Brain Res 399:399–403

    PubMed  CAS  Google Scholar 

  390. Ryan AF, Simmons DM, Watts AG, Swanson LW (1991) Enkephalin mRNA production by cochlear and vestibular efferent neurons in the gerbil brainstem. Exp Brain Res 87:259–267

    PubMed  CAS  Google Scholar 

  391. Rybak LP, Santiago W, Whitworth C (1986) An experimental study using sodium salicylate to reduce cochlear changes induced by furosemide. Arch Otorhinolaryngol 243:180–182

    PubMed  CAS  Google Scholar 

  392. Rydmarker S, Horner KC (1990) Morphological changes of hair cell stereocilia and tectorial membrane of guinea pigs with experimentally induced hydrops. Scann Electron Microscopy Int 4:705–714

    CAS  Google Scholar 

  393. Saffieddine S, Eybalin M (1992) Triple immunofluorescence evidence for a coexistence of acetylcholine, enkephalins and calcitonin gene-related peptide within efferent (olivocochlear) neurons of rats and guinea pigs. Eur J Neurosci 4:981–992

    Google Scholar 

  394. Saito K (1983) Fine structure of the sensory epithelium of guinea pig organ of Corti: Subsurface cisternae and lamellar bodies in the outer hair cell. Cell Tissue Res 229:467–481

    PubMed  CAS  Google Scholar 

  395. Saito T, Moataz R, Dulon D (1991) Cisplatin blocks depolarization induced calcium entry in isolated cochlear outer hair cells. Hear Res 56:143–147

    PubMed  CAS  Google Scholar 

  396. Salt AN, Stopp PE (1979) The effect of raising the scala tympani potassium concentration on the tone induced cochlear responses of the guinea pig. Exp Brain Res 36:87–98

    PubMed  CAS  Google Scholar 

  397. Santi P, Anderson CB (1987) A newly identified surface coat of cochlear hair cells. Hear Res 27:47–65

    PubMed  CAS  Google Scholar 

  398. Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. Eur J Neurosci 12:1906–1916

    CAS  Google Scholar 

  399. Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150

    PubMed  CAS  Google Scholar 

  400. Schacht J, Zenner HP (1987) Evidence that phospoinositides mediate motility in cochlear outer hair cells. Hear Res 31:155–160

    PubMed  CAS  Google Scholar 

  401. Schacht J (1993) Biochemical basis of aminoglycoside ototoxicity. Otolaryngol Clin North Am 26:845–856

    PubMed  CAS  Google Scholar 

  402. Schloth E (1982) Akustische Aussendungen des menschlichen Ohres (otoakustische Emissionen). Med. Dissertation, Universität München

    Google Scholar 

  403. Schloth E (1983) Relation between spectral composites of spontaneous otoacoustic emissions and fine-structure of threshold in quiet. Acustica 53:250–256

    Google Scholar 

  404. Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous oto-acoustic emissions. Hear Res 11:285–293

    PubMed  CAS  Google Scholar 

  405. Schmiedt RA (1986) Acoustic distortion in the ear canal. I. Cubic difference tones: Effects of acute noise injury. J Acoust Soc Am 79:1481–1490

    PubMed  CAS  Google Scholar 

  406. Schmiedt RA (1986) Effects of asphyxia on levels of ear canal emissions in gerbils. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 112

    Google Scholar 

  407. Schmiedt RA, Adams JC (1991) Stimulated acoustic emissions in the ear of the gerbil. Hear Res 5:295–305

    Google Scholar 

  408. Schmolke B, Hörmann K (1990) Vaskuläre Risikofaktoren beim Hörsturz und ihre Häufigkeit in der Normalbevölkerung — Eine retrospektive Studie. HNO 38:440–445

    PubMed  CAS  Google Scholar 

  409. Schofield PR, Darlson MG, Fujita N et al. (1987) Sequence and functional expression of the GABAA receptor shows a ligand gated receptor super-family. Nature 328:221–227

    PubMed  CAS  Google Scholar 

  410. Schröder M, Laskawi R, Stennert E, Kühnle H, Thiele FW (1986) Cis-Platin Ototoxizität — eine klinische Studie. Laryngol Rhinol Otol (Stuttg) 65:86–89

    Google Scholar 

  411. Schuetze SM, Role LW (1987) Developmental regulation of nicotinic acetylcholine receptors. Ann Rev Neurosci 10:403–457

    PubMed  CAS  Google Scholar 

  412. Schuhknecht HF (1955) Presbyacusis. Laryngoscope 65:402–419

    Google Scholar 

  413. Schuhknecht HF, Churchill JA, Doran R (1959) The localization of acetlycholinesterase in the cochlea. Arch Otolaryngol 69:549–559

    Google Scholar 

  414. Schwartz IR, Ryan AF (1983) Differential labeling of sensory cell and neural populations in the organ of Corti following amino acid incubations. Hear Res 9:185–200

    PubMed  CAS  Google Scholar 

  415. Schwartz IR, Ryan AF (1986) Amino acid labeling patterns in the efferent innervation of the cochlea: an electron microscope autoradiographic study. J Comp Neurol 246:500–512

    PubMed  CAS  Google Scholar 

  416. Schweitzer VG (1993) Ototoxicity of chemotherapeutic agents. In: Rybak LP (ed) Otolaryngol clin North Am 26/5:759–789

    Google Scholar 

  417. Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea-pig using Mössbauer technique. J Acoust Soc Am 72:131–141

    PubMed  CAS  Google Scholar 

  418. Sellick PM, Patuzzi R, Johnstone BM (1983) Comparison between the tuning properties of inner hair cells and basilar membrane motion. Hear Res 10:93–100

    PubMed  CAS  Google Scholar 

  419. Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol (Stockh) 111:707–718

    CAS  Google Scholar 

  420. Shigemoto T, Ohmori H (1990) Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells. J Physiol (Lond) 420:127–148

    CAS  Google Scholar 

  421. Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10

    PubMed  CAS  Google Scholar 

  422. Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182

    PubMed  CAS  Google Scholar 

  423. Siegel JH, Kim DO, Molnar CE (1982) Effects of altering organ of Corti on cochlear distortion products 2f2-f1 and 2f1-f2. J Neurophysiol 47:303–328

    PubMed  CAS  Google Scholar 

  424. Simmons FB (1979) The double-membrane break syndrome in sudden hearing loss. Laryngoscope 89:59–66

    PubMed  CAS  Google Scholar 

  425. Slepecky NB, Chamberlain SC (1985) The cell coat of inner ear sensory cells as demonstrated by ruthenium red. Hear Res 17:281–288

    PubMed  CAS  Google Scholar 

  426. Slepecky NB, Ulfendahl M, Flock A (1988) Shortening and elongation of isolated outer hair cells in response to application of potassium gluconate, acetylcholine and canonized ferritin. Hear Res 34:119–126

    PubMed  CAS  Google Scholar 

  427. Slepecky NB, Ulfendahl M, Flock A (1988) Outer hair cell motility — calcium involvement in the pharmaco-mechanical response. In: Duifhuis H, Horst JW, Wit HP (eds) Basic issues in hearing. Academic Press, New York, pp 49–55

    Google Scholar 

  428. Slepecky NB, Ulfendahl M (1992) Actin-binding and microtubule-associated proteins in the organ of Corti. Hear Res 57:201–215

    PubMed  CAS  Google Scholar 

  429. Slepecky NB, Ulfendahl M (1993) Evidence for calciumbinding proteins and calcium-dependent regulatory proteins in sensory cells of the organ of Corti. Hear Res 7:73–84

    Google Scholar 

  430. Slepecky NB, Savage JE (1994) Expression of actin isoforms in the guinea pig organ of Corti: Muscle isoforms are not detected. Hear Res 73:16–26

    PubMed  CAS  Google Scholar 

  431. Sliwinska-Kowalska M, Parakkal M, Schneider ME, Fex J (1989) CGRP-like immunoreactivity in the guinea pig organ of Corti: a light and electron microscopy study. Hear Res 42:83–95

    PubMed  CAS  Google Scholar 

  432. Smoorenburg GF (1972) Combination tones and their origin. J Acoust Soc Am 52:615–632

    Google Scholar 

  433. Smurzynski J, Leonhard G, Kim DO, Lafreniere DC, Jung MD (1990) Distortion product otoacoustic emissions in normal and impaired adult ears. Arch Otolaryngol Head Neck Surg 116:1309–1316

    PubMed  CAS  Google Scholar 

  434. Sobkowicz HM, Emmerling MR (1989) Development of acetylcholinesterase-positive neuronal pathways in the cochlea of the mouse. J Neurocytol 18:209–224

    PubMed  CAS  Google Scholar 

  435. Soucek S, Michaels L, Fröhlich A (1986) Evidence for hair cell degeneration as the primary lesion in hearing loss of the elderly. J Otolaryngol 15:175–183

    PubMed  CAS  Google Scholar 

  436. Spoendlin HH (1960) Submikroskopische Strukturen im Cortischen Organ der Katze. Acta Otolaryngol (Stockh) 52:111–130

    Google Scholar 

  437. Spoendlin HH (1969) Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol (Stockh) 67:239–254

    CAS  Google Scholar 

  438. Spoendlin HH (1980) Akustisches Trauma. In: Berendes J, Link R, Zöllner F (Hrsg.) HNO-Heilkunde in Praxis und Klinik, Thieme, Stuttgart, pp 42-1–42-68

    Google Scholar 

  439. Spoendlin HH (1994) Strukturelle Organisation des Innenohres. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Praxis und Klinik. Thieme, Stuttgart, pp 32–81

    Google Scholar 

  440. Spoendlin HH, Gacek RR (1963) Electronmicroscopic study of the efferent and afferent innervation of the organ of Corti in the cat. Ann Otol 72:660–686

    CAS  Google Scholar 

  441. Spongr VP, Boettcher FA, Saunders SS, Salvi RJ (1992) Effects of noise and salicylate on hair cell loss in the chinchilla cochlea. Arch Otolaryngol Head Neck Surg 118:157–164

    PubMed  CAS  Google Scholar 

  442. Steyger PS, Furness DN, Hackney CM, Richardson GP (1988) Immunocytochemistry of cytosceletal proteins in the guinea pig cochlea — a comparison of different commercially available antiboides and ultrastructure. Br J Audiol 23:143

    Google Scholar 

  443. Strickland AE, Burns EM, Tubs A (1985) Incidence of spontaneous otoacoustic emissions in children and infants. J Acoust Soc Am 78:931–935

    PubMed  CAS  Google Scholar 

  444. Stypulkowski PH (1990) Mechanisms of salicylate ototoxicity. Hear Res 46:113–146

    PubMed  CAS  Google Scholar 

  445. Suga N, Neuweiler G, Müller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 106:111–125

    Google Scholar 

  446. Suga F, Lindsay Jr. (1976) Histopathological observations of presbyacusis. Ann Otol 85:169–184

    CAS  Google Scholar 

  447. Syka J, Sykova E, Patuzzi R, Johnstone BM (1987) Potassium concentration changes in the organ of Corti during loud sound stimulation. Inner Ear Biol [Abstr] 24:56

    Google Scholar 

  448. Sytka J, Aitkin L (eds) (1982) Neuronal mechanisms of hearing. Plenum, New York

    Google Scholar 

  449. Szymko YM, Dimitri PS, Saunders JC (1992) Stiffness of hair bundels in the chick cochlea. Hear Res 59:241–249

    PubMed  CAS  Google Scholar 

  450. Takada A, Schacht J (1982) Calcium antagonism and reversibility of gentamycin-induced loss of cochlear microphonics in the guinea pig. Hear Res 8:179–186

    PubMed  CAS  Google Scholar 

  451. Takada A, Bledsoe S, Schacht J (1985) An energy-dependent step of gentamicin-induced loss of cochlear microphonics in the guinea pig. Hear Res 8:179–186

    Google Scholar 

  452. Takeda N, Kitajiri M, Girgis S, Hillyard CJ, MacIntyre I et al. (1986) The presence of a calcitonin gene-related peptide in the olivochloear bundle in rat. Expr Brain Res 61:575–578

    CAS  Google Scholar 

  453. Takeyama M, Kusakari J, Nishikawa N, Wada T (1992) The effect of crossed olivo-cochlear bundle stimulation on acoustic trauma. Acta Otolaryngol (Stockh) 112:205–209

    CAS  Google Scholar 

  454. Tanner MJA (1993) Molecular and cellular biology of the erythrocyte anion exchanger (AEI). Sem Hematol 30:34–57

    CAS  Google Scholar 

  455. Tasaki J, Spyropoulos CS (1959) Stria vascularis as source of endocochlear potentials. J Neurophysiol 22:149

    PubMed  CAS  Google Scholar 

  456. Taudyl M, Syka J, Popelar J, Ulehlova L (1989) Comparison of carboplatin and cisplatin ototoxicity in guinea pig. Proc. 26th Workshop on Inner Ear Biology. (Abstracts), p 66

    Google Scholar 

  457. Thompson GC, Cortez AM, Igarashi M (1986) GABA-like immunoreactivity in the squirrel monkey organ of Corti. Brain Res 372:72–79

    PubMed  CAS  Google Scholar 

  458. Tilney LG, Derosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86:244–259

    PubMed  CAS  Google Scholar 

  459. Tilney LG, Saunders JC, Egelman E, DeRosier DJ (1982) Changes in the organization of actin filaments in the sterocilia of noise-damaged lizard cochlea. Hear Res 7:181–197

    PubMed  CAS  Google Scholar 

  460. Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell of the cochlea. J Cell Biol 96:807–821

    PubMed  CAS  Google Scholar 

  461. Tilney LG, Tilney MS (1984) Observations on how actin filaments become organized in cells. J Cell Biol 99:76–82

    Google Scholar 

  462. Tilney LG, Tilney MS, Cotanche DA (1988) Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereocilia length is generated. J Cell Biol 106:355–365

    PubMed  CAS  Google Scholar 

  463. Tonndorf J (1976) Endolymphatic hydrops: mechanical causes of hearing loss. Arch Otorhinolaryngol 212:293–299

    PubMed  CAS  Google Scholar 

  464. Ulfendahl M (1987) Motility in auditory sensory cells. Acta Paediatr Scand 130:521–527

    CAS  Google Scholar 

  465. Ulfendahl M (1988) Volume and length changes in outer hair cells of the guinea pig after potassium-induced shortening. Arch Otorhinolarnygol 245:237–243

    CAS  Google Scholar 

  466. Usami S, Makoto I, Thompson CG (1988) Light-and electronmicroscopic study of gamma-aminobutyrid-acid-like immunoreactivity in the guinea pig organ of Corti. J Otorhinolaryngol Relat Spec 50:162–169

    CAS  Google Scholar 

  467. Usami S, Hozawa J, Tazawa M, Yoshihara T, Igarashi M, Thompson GC (1988) Immunocytochemical study of catecholaminergic innervation in guinea pig cochlea. Acta Otolaryngol Suppl (Stockh) 447–36–45

    Google Scholar 

  468. Uziel A, Bonfils P (1989) Assessment of endolymphatic cochlear hydrops by means of evoked acoustic emissions. In: Nadol JB (ed) Second Intl Symp Méniére’s disease. Kugler, Amsterdam, pp 379–383

    Google Scholar 

  469. Vane Jr. (1971) Inhibition of prostaglandin synthesis as a mechnaism of action for aspirin like drugs. Nature 231:232–235

    CAS  Google Scholar 

  470. Van Megen YJB, Klaasen ABM, Rodriques de Miranda JF, Kuijpers W (1988) Cholinergic muscarinic receptors in rat cochlea. Brain Res 474:185–188

    PubMed  Google Scholar 

  471. Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7:21–43

    PubMed  CAS  Google Scholar 

  472. Veuillet E, Collet L, Morgon A (1992) Differential effects of earcanal pressure and contralateral acoustic stimulation on evoked otoacoustic emissions in humans. Hear Res 61:47–55

    PubMed  CAS  Google Scholar 

  473. Vosteen KH (1961) Neue Aspekte zur Biologie und Pathologie des Innenohres. Arch Otorhinolaryngol 178:1–104

    CAS  Google Scholar 

  474. Wackym PA, Popper P, Wada K, Wenthold RJ, Micevych PE (1992) Expression of α2, α3, α4 und β2 neuronal nicotinic receptor subunit mRNAs in the rat auditory system. Proc Symp Mol Biol Hearing and Deafness, La Jolla CA, P49

    Google Scholar 

  475. [475] Werman R (1966) A review: criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18:745–766

    PubMed  CAS  Google Scholar 

  476. Wersäll J (1981) Structural damage of the organ of Corti and the vestibular epithelia caused by aminoglycoside antibiotics in the guinea pig. In: Lerner SA, Matz GJ, Hawkins JE (eds) Aminoglycoside ototoxicity. Little Brown, Boston pp 197–214

    Google Scholar 

  477. Whipple MR, Drescher DG (1984) Muscarinic receptors in the cochlear nucleus and auditory nerve of the guinea pig. J Neurochem 43:192–198

    PubMed  CAS  Google Scholar 

  478. Whitlon DS, Sobkowicz HM (1989) GABA-like immunore-activity in the cochlea of the developing mouse. J Neuro — cytol 18:505–518

    CAS  Google Scholar 

  479. Widerhold ML, Mahoney JW, Kellogg DL (1986) Acoustic overstimulation reduces 2f1-f2 cochlea emissions at all levels in the cat. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer, Berlin Heidelberg New York Tokyo, pp 322–329

    Google Scholar 

  480. Wier CC, Pasanen EG, McFadden D (1988) Partial dissociation of spontaneous otoacoustic emissions and distortion products during aspirin use in humans. J Acoust Soc Am 230–237

    Google Scholar 

  481. Williams SE, Zenner HP, Schacht J (1987) Three molecular steps of aminoglycoside ototoxicity demonstrated on outer hair cells. Hear Res 30:11–18

    PubMed  CAS  Google Scholar 

  482. Williams S, Smith DE, Schacht J (1987) Characteristics of gentamycin uptake in the isolated crista ampullaris of the inner ear of the guinea pig. Biochem Pharmacol 36:89–95

    PubMed  CAS  Google Scholar 

  483. Wilson JP (1980) Evidence for a cochlea origin for acoustic re-emissions, threshold fine structure and tinnitus. Hear Res 2:233–252

    PubMed  CAS  Google Scholar 

  484. Wilson JP (1980) The combination tone, 2f1-f2, in psychophysics and ear canal recording. In: Psychophysical, physiological and behavioral studies in hearing. Delft Univ. Press, Delft, pp 43–52

    Google Scholar 

  485. Wilson JP (1984) Otoacoustic emissions and hearing mechanisms. Rev Laryngol 105:179–191

    CAS  Google Scholar 

  486. Wilson JP (1986) Otoacoustic emissions and tinnitus. Scand Audiol 25 [Suppl]:109–119

    CAS  Google Scholar 

  487. Wilson JP, Sutton GL (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. CIBA Foundation Symposium, Pitman, London, pp 82–107

    Google Scholar 

  488. Wilson JP, Evans EF (1983) Effects of furosemide, flaxedil, noise and toneover-stimulation on the evoked otoacoustic emission in cat. Proc Int Union Physiol Soc 15:100

    Google Scholar 

  489. Wit HP, Ritsma RJ (1979) Stimulated acoustic emissions from the human ear. J Acoust Soc Am 66:911–914

    Google Scholar 

  490. Wit HP, Ritsma RJ (1980) Evoked acoustical responses form the human ear: Some experimental results. Hear Res 2:253–261

    PubMed  CAS  Google Scholar 

  491. Wit HP, Langevoort JC, Ritsma RJ (1981) Frequency spectra of cochlear acoustic emissions (Kemp-echoes). J Acoust Soc Am 70:437–445

    Google Scholar 

  492. Wright CG, Schaefer SD (1982) Inner ear histopathology in patients treated with cis-platinum. Laryngoscope 92:1408–1413

    PubMed  CAS  Google Scholar 

  493. Yamaguchi K, Ohmori H (1993) Suppression of the slow K+ current by cholinergic agonists in cultured chick ganglion neurones. J Physiol 464:213–228

    PubMed  CAS  Google Scholar 

  494. Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11:126–133

    PubMed  CAS  Google Scholar 

  495. Zenner HP (1981) Cytosceletal and muscle-like elements in cochlear hair cells. Arch Otorhinolarnygol 230:81–92

    CAS  Google Scholar 

  496. Zenner HP (1983) Biochemical approaches to single outer hair cells. In: Löbe LP (ed) Cochlear research. Halle Univ. Press, Halle, pp 17–21

    Google Scholar 

  497. Zenner HP (1986) Motile responses in outer hair cells. Hear Res 22:83–90

    PubMed  CAS  Google Scholar 

  498. Zenner HP (1986) Molecular structure of hair cells. In: Altschuler RA, Hoffmann DW, Bobbin RP (eds) Neurobiology of hearing. The cochlea. Raven, New York, pp 1–21

    Google Scholar 

  499. Zenner HP (1986) K+-induced motility and depolarization of cochlear hair cells: direct evidence for a new pathophysiological mechanism in Ménière’s disease. Arch Otorhinolaryngol 243:108–111

    PubMed  CAS  Google Scholar 

  500. Zenner HP (1987) Modern aspects of hair cell biochemistry, motility and tinnitus. In: H. Feldmann (Hrsg) Proc III International Tinnitus Seminar Münster. Harsch, Karlsruhe, pp 52–57

    Google Scholar 

  501. Zenner HP (1988) Motility of outer hair cells as an active, actinmediated process. Acta Otolaryngol (Stockh) 105: 39–44

    CAS  Google Scholar 

  502. Zenner HP (1990) Die Schallverarbeitung im Innenohr. Neue Erkenntnisse zur Zellbiologie der Haarzelle. Sitzungsberichte wissenschaftl. Gesellschaft J. W. Goethe Universität Frankfurt. Steiner, Stuttgart, S 94–124

    Google Scholar 

  503. Zenner HP (1994) Physiologische und biochemische Grundlagen des normalen und gestörten Gehörs. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Praxis und Klinik, Bd 1. Thieme, Stuttgart, S 81–231

    Google Scholar 

  504. Zenner HP, Zenner B (1979) Vasopressin and isoproterenol activate adenylate cyclase in the guinea pig inner ear. Arch Otorhinolaryngol 222:275–283

    PubMed  CAS  Google Scholar 

  505. Zenner HP, Gitter AH, Zimmermann U, Schmitt U, Frömter E (1985) Die isolierte lebende Haarzelle — ein neues Modell zur Untersuchung der Hörfunktion. Laryngol Rhinol Otol (Stuttg) 64:642–648

    CAS  Google Scholar 

  506. Zenner HP, Zimmermann U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hear Res 18:127–133

    PubMed  CAS  Google Scholar 

  507. Zenner HP, Zimmermann U, Gitter AH (1987) Fast motility of isolated mammalian auditory sensory cells. Biochem Biophys Res Comm 49:304–308

    Google Scholar 

  508. Zenner HP, Schacht J (1986) Hörverlust durch Aminoglykosid Antibiotika: Angriff am Membranbaustein PIP2 in äußeren Haarzellen als Wirkungsmechanismus. HNO 34:417–423

    PubMed  CAS  Google Scholar 

  509. Zenner HP, Arnold W, Gitter AH (1988) Outer hair cells as fast and slow cochlear amplifiers with a bidirectional transduction cycle. Acta Otolaryngol (Stockh) 105:457–462

    CAS  Google Scholar 

  510. Zenner HP, Zimmermann R, Gitter AH (1988) Active movements of the cuticular plate induce sensory hair motion in mammalian outer hair cells. Hear Res 34:233–240

    PubMed  CAS  Google Scholar 

  511. Zenner HP, Reuter G, Plinkert PK, Zimmermann U, Gitter AH (1989) Outer hair cells possess acetylcholine receptors and produce motile responses in the organ of Corti. In: Wilson UP, Kemp DT (eds) Cochlear mechanics. Plenum Press, pp 93–98

    Google Scholar 

  512. Zenner HP, Gitter AH (1989) Transduktions-und Motorstörungen cochleärer Haarzellen bei M. Ménière und Aminoglykosidschwerhörigkeit. Laryngol Rhinol Otol (Stuttg) 68:552–556

    CAS  Google Scholar 

  513. Zenner HP, Zimmermann U, Gitter AH (1990) Cell potential and motility of isolated mammalian vestibular sensory cells. Hear Res 50:289–294

    PubMed  CAS  Google Scholar 

  514. Zenner HP, Ernst A (1993) Cochlear-motor, transduction and signal-transfer tinnitus: models for three types of cochlear tinnitus. Eur Arch Otorhinolaryngol 249:447–454

    PubMed  CAS  Google Scholar 

  515. Zenner HP, Keiner S, Zimmermann U (1994) Specific glutathione-SH inhibition of toxis effects of metabolized gentamicin on isolated guinea pig hair cells. Eur Arch Otorhinolaryngol 251:84–90

    PubMed  CAS  Google Scholar 

  516. Zenner HP, Reuter G, Zimmermann U, Gitter AH, Femin C, LePage El (1994) Transitory endolymphatic leakage induced hearing loss and tinnitus in Ménière’s syndrome: effects of endolymph on hair cell functions in the guinea pig. Eur Arch Otorhinolaryngol 251:143–153

    PubMed  CAS  Google Scholar 

  517. Zimmermann R (1990) Untersuchungen zur Beweglichkeit lebender äußerer Haarzellen in der Kurzzeitkultur. Med. Dissertation, Universität Tübingen

    Google Scholar 

  518. Zorowka PG, Schmitt HJ, Gutjahr P (1993) Evoked otoacoustic emissions and pure tone threshold audiometry in patients receiving cisplatinum therapy. Int J Pediatr Otorhinolaryngol 25:73–80

    PubMed  CAS  Google Scholar 

  519. Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523

    PubMed  CAS  Google Scholar 

  520. Zurek PM, Clark WW, Kim DO (1982) The behaviour of acoustic distortion products in the ear canals of chinchilla with normal or damaged ears. J Acoust Soc Am 72:774–780

    PubMed  CAS  Google Scholar 

  521. Zwicker E (1983) Delayed evoked otoacoustic emissions and their suppression by Gaussian-shaped pressure impulses Hear Res 11:359–371

    PubMed  CAS  Google Scholar 

  522. Zwicker E (1983) On peripheral processing in human hearing. In: Klinke R, Hartmann R (Hrsg) Hearing — Physiol, bases and psychophysics. Springer, Berlin Heidelberg New York Tokyo pp 104–110

    Google Scholar 

  523. Zwicker E (1985) Das Innenohr als aktives schallverarbeitendes und schallaussendendes System. Fortschr Akust DAGA 85:29–44

    Google Scholar 

  524. Zwicker E (1987) The uncorrelation between tinnitus and SOAE. In: Feldmann H (Hrsg) Proc III International Tinnitus Seminar Münster. Harsch, Karlsruhe pp 75–81

    Google Scholar 

  525. Zwicker E (1990) On the frequency separation of simultaneously evoked otoacoustic emissions. J Acoust Soc Am 88:1639–1641

    PubMed  CAS  Google Scholar 

  526. Zwicker E (1990) On the influence of probe impedance on evoked otoacoustic emissions. Hear Res 47:185–190

    PubMed  CAS  Google Scholar 

  527. Zwicker E, Harris FP (1990) Psychoacoustical and ear canal cancellation of 2f1-f2 distorsion product. J Acoust Soc Am 87:2583–2591

    PubMed  CAS  Google Scholar 

  528. Zwicker E, Manley G (1981) Acoustical responses and sup-pressionperiod patterns in guinea pigs. Hear Res 4:43–52

    PubMed  CAS  Google Scholar 

  529. Zwicker E, Schloth E (1984) Interrelation of different otoacoustic emissions. J Acoust Soc Am 75:1148–1154

    PubMed  CAS  Google Scholar 

  530. Zwislocki J (1962) Analysis of the middle ear function. Part I: Input impedance. J Acoust Soc Am 34:1514–1523

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plinkert, P.K. (1995). Physiologie und Pathophysiologie des Corti-Organs. In: Feldmann, H., Ganzer, U. (eds) Teil I: Referate. Verhandlungsbericht 1995 der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie, vol 1995 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79553-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79553-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58929-7

  • Online ISBN: 978-3-642-79553-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics