Advertisement

Physiologie und Pathophysiologie des Corti-Organs

  • P. K. Plinkert
Conference paper
Part of the Verhandlungsbericht 1995 der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie book series (VBDG HNO, volume 1995 / 1)

Zusammenfassung

Die Kenntnis physiologischer und pathophysiologischer Zusammenhänge erlaubt es kausal begründete Konzepte in Diagnostik und Therapie zu entwickeln. Auf vielen Gebieten der klinischen Medizin wurden die Organfunktionen bereits vor einigen Jahren auf molekularer Ebene geklärt. Hieraus entwickelten sich zahlreiche diagnostische und therapeutische Ansatzpunkte. Trotz enormer Fortschritte in der Hörforschung stehen jedoch pathophysiologisch begründete Therapiekonzepte für das Innenohr noch weitgehend aus. Dies beruht auf der Tatsache, daß die Innenohrstrukturen sehr vulnerabel sind und zudem durch eine feste Knochenhülle geschützt, nur schwer für den Untersucher zugänglich sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Altschuler RA, Fex J, Parakkal MH, Eckenstein F (1984) Colocalization of enkephalin-like and choline acetyltransferase like immunoreactivities in olivocochlear neurons of the guinea pig. J Histochem Cytochem 32:839–843PubMedGoogle Scholar
  2. [2]
    Altschuler RA, Parakkal MH, Rubio JA, Hoffmann DW, Fex J (1984) Enkephalin-like immunoreactivity in the guinea pig organ of Corti: Ultrastructural and lesion studies. Hear Res 16:17–31PubMedGoogle Scholar
  3. [3]
    Altschuler RA, Kacher B, Rubio JA, Parakkal MH, Fex J (1985) Immunocytochemical localization of cholineacetyltransferase — like immunoreactivity in the guinea pig cochlea. Brain Res 338:1–11PubMedGoogle Scholar
  4. [4]
    Altschuler RA, Hoffmann DW, Reeks KA, Fex J (1985) Localization of dynorphin B-like and alpha-neoendorphin-like immunoreactivities in the guinea pig: Hear Res 17:249–258PubMedGoogle Scholar
  5. [5]
    Altschuler RA, Fex J (1986) Efferent neurotransmitters. In: Altschuler RA, Hoffmann DW, Bobbin RP (Hrsg) Neurobiology of hearing: The cochlea. Raven, New York, pp 383–396Google Scholar
  6. [6]
    Altschuler RA, Sheridan CE, Horn JW, Wenthold RJ (1989) Immunocytochemical localization of glutamate immunoreactivity in the guinea pig cochlea. Hear Res 42:167–174PubMedGoogle Scholar
  7. [7]
    Anderson SD, Kemp DT (1979) The evoked cochlear mechanical response in laboratory primates. Arch Otorhinolaryngol 224:47–54PubMedGoogle Scholar
  8. [8]
    Anniko M, Arnold W (1991) Acetylcholine receptor localization in human adult cochlear and vestibular hair cells. Acta Otolaryngol (Stockh) 111:491–499Google Scholar
  9. [9]
    Anniko M, Sobin A (1986) Cisplatin: Evaluation of its ototoxic potential. Am J Otolaryngol 7:276–293PubMedGoogle Scholar
  10. [10]
    Arnold W, Anniko M, Pfaltz CR (1990) Funktionelle Morphologie der äußeren Haarzellen des Menschen: Neue Aspekte. Laryngol Rhinol Otol (Stuttg) 69:177–186Google Scholar
  11. [11]
    Arnold W, Morgenstern C, Thorn L, Schinko I (1978) Morphologische und funktionelle Veränderungen am Innenohr nach Vergiftung mit Etacrynsäure und Atoxyl. Arch Otorhinolaryngol 218:179–190PubMedGoogle Scholar
  12. [12]
    Arnold W, Nadol JB Jr., Weidauer H (1981) Ultrastructural histopathology in a case of human ototoxicity due to loop diuretics. Acta Otolaryngol (Stockh) 1:391–414Google Scholar
  13. [13]
    Ashmore JF (1987) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347Google Scholar
  14. [14]
    Ashmore JF, Meech RW (1986) Ionic basis of membrane potential in outer hair cells of guinea pig cochlea. Nature 322:368–371PubMedGoogle Scholar
  15. [15]
    Ashmore JF, Housley GD, Kolston PJ (1992) Two control systems for the outer hair cell motor. In: Cazals Y, Demany L, Horner K (Hrsg) Advances in Biosciences, Auditory Physiology and Perception. Vol 83. Pergamon, Oxford, pp 19–26Google Scholar
  16. [16]
    Assad JA, Shepherd GMG, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994PubMedGoogle Scholar
  17. [17]
    Barron SE, Daigneault EA (1987) Effect of cisplatin on hair cell morphology and lateral wall Na, K-ATPase activity. Hear Res 26:131–137PubMedGoogle Scholar
  18. [18]
    Bartolami S, Guiramand J, Lenoir M, Pujol R, Recasens M (1990) Carbachol-induced inositol phosphate formation during rat cochlea development. Hear Res 47:229–234PubMedGoogle Scholar
  19. [19]
    Bartolami S, Planche M, Pujol R (1993) Inhibition of the carbachol-evoked synthesis of inositol phosphates by ototoxic drugs in the rat cochlea. Hear Res 67:203–210PubMedGoogle Scholar
  20. [20]
    Beck C (1984) Pathologie der Innenohrschwerhörigkeit. Arch Otorhinolaryngol [Suppl I]:1–57Google Scholar
  21. [21]
    Beck A, Maurer J, Welkoborsky HJ, Mann W (1992) Veränderungen transitorisch evozierter otoakustischer Emissionen unter Chemotherapie mit Cisplatin und 5 FU. HNO 40:123–127PubMedGoogle Scholar
  22. [22]
    Békésy G von (1934) Über die nichtlinearen Verzerrungen des Ohres. Ann Phys Lpz 20:809–811Google Scholar
  23. [23]
    Békésy G von (1960) Experiments in hearing. McGraw-Hill, New YorkGoogle Scholar
  24. [24]
    Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321PubMedGoogle Scholar
  25. [25]
    Bledsoe SC, Bobbin RP, Chihal DM (1981) Kainic acid: An evaluation of its action on cochlear potentials. Hear Res 4:109–120PubMedGoogle Scholar
  26. [26]
    Bobbin RP, Konishi T (1971) Acetylcholine mimics crossed olivocochlear bundle stimulation. Nature 231:222–223Google Scholar
  27. [27]
    Bobbin RP, Konishi T (1974) Action of cholinergic and anticholinergic drugs at the crossed olivocochlear bundle-hair cell junction. Acta Otolaryngol (Stockh) 77:56–65Google Scholar
  28. [28]
    Bobbin RP, Thompson MH (1978) Glutamate stimulates cochlear afferent nerve fibers. Fed Proc 37:613Google Scholar
  29. [29]
    Bobbin RP, Fallon M, Puel JL, Bryant G, Bledsoe SC, Zajic G, Schacht J (1990) Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells. Hear Res 47:39–52PubMedGoogle Scholar
  30. [30]
    Bonfils P, Bertrand Y, Uziel A (1988) Evoked otoacoustic emissions: normative data and presbyacusis. Audiology 27:27–35PubMedGoogle Scholar
  31. [31]
    Bonfils P, Piron JP, Uziel A, Pujol R (1988) A correlative study of evoked otoacoustic emission properties and audiometric thresholds. Arch Otorhinolaryngol 245:53–56PubMedGoogle Scholar
  32. [32]
    Bonfils P, Uziel A, Pujol R (1988) Screening for auditory dysfunction in infants by evoked oto-acoustic emissions. Arch Otolaryngol Head Neck Surg 114:887–890PubMedGoogle Scholar
  33. [33]
    Bonfils P, Uziel A, Pujol R (1988) Evoked otoacoustic emissions: a fundamental and clinical survey. ORL 50:212–218PubMedGoogle Scholar
  34. [34]
    Bonfils P, Uziel A (1988) Evoked otoacoustic emissions in patients with acoustic neuromas. Am J Otol 9:412–417PubMedGoogle Scholar
  35. [35]
    Bonfils P, Uziel A (1989) Clinical applications of evoked acoustic emissions: Results in normally hearing and hearing-impaired subjects. Ann Otol Rhinol Laryngol 98:326–331PubMedGoogle Scholar
  36. [36]
    Bonner TI (1989) New subtypes of muscarinic acetlycholine receptors. Trends Pharmacol Sci 10 [Suppl]:11–15Google Scholar
  37. [37]
    Bormann J (1988) Electrophysiology of GABAA receptor subtypes. TINS 11/3:112–116Google Scholar
  38. [38]
    Bosher SK (1979) The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea pig. J Physiol 293:329–345PubMedGoogle Scholar
  39. [39]
    Bosher SK (1980) The nature of the ototoxic actions of ethacrynic acid upon the mammalian endolymph system. I. Functional aspects. Acta Otolaryngol (Stockh) 89: 407–418Google Scholar
  40. [40]
    Boston Collaborative Drug Surveillance Program (1973) Drug induced deafness: A cooperative study. JAMA 224:515–516Google Scholar
  41. [41]
    Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939PubMedGoogle Scholar
  42. [42]
    Bray P, Kemp DT (1987) An advanced cochlear echo technique suitable for infant screening. Br J Audiol 21:191–204PubMedGoogle Scholar
  43. [43]
    Brown AM (1987) Acoustic distortion from rodent ears: a comparison of responses from rats, guinea pigs and gerbils. Hear Res 31:25–39PubMedGoogle Scholar
  44. [44]
    Brown AM, Kemp DT (1984) Suppressibility of the 2f1-f2 stimulated emissions in gerbil and man. Hear Res 13: 29–37PubMedGoogle Scholar
  45. [45]
    Brown AM, McDowell B, Forge A (1989) Acoustic distorsion products can be used to monitor the effects of chronic gentamycin treatment. Hear Res 42:143–156PubMedGoogle Scholar
  46. [46]
    Brown MC, Nuttal AF, Masta RI (1983) Intracellular recordings from cochlear outer hair cells: effects of stimulation of the crossed olivo-cochlear bundle. Science 222:69–72PubMedGoogle Scholar
  47. [47]
    Brown RD, McElwee TW (1972) Effects of intra-arterially and intravenously administered ethacrynic acid and furosemide on cochlear N1 in cats. Toxicol App1 Pharmacol 22:589–594Google Scholar
  48. [48]
    Brown RD, Feldman AM (1978) Pharmacology of hearing and ototoxicity. Ann Rev Pharmacol Toxicol 18:233–252Google Scholar
  49. [49]
    Brownell WE (1986) Outer hair cell motility and cochlear frequency selectivity. In: Webster WR, Aitkin LM (eds) Auditory frequency selectivity. Plenum, New York, pp 109–118Google Scholar
  50. [50]
    Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hearing 11:82–92Google Scholar
  51. [51]
    Brownell WE, Bader CR, Bertrand de Ribeaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196PubMedGoogle Scholar
  52. [52]
    Brundin L, Flock A, Canlon B (1989) Sound-induced motility of isolated cochlear outer hair cells is frequency-specific. Nature 342:814–816PubMedGoogle Scholar
  53. [53]
    Brundin L, Flock B, Flock A (1992) Sound induced displacement response of the guinea pig hearing organ and its relation to the cochlear potentials. Hear Res 58:175–184PubMedGoogle Scholar
  54. [54]
    Brundin L, Russell J (1993) Sound-induced movements and frequency tuning in outer hair cells isolated from the guinea pig cochlea. Proc Intl Symp Biophysics of hair cell sensory systems. World Scientific, Singapore, pp 182–191Google Scholar
  55. [55]
    Buno W (1978) Auditory nerve fiber activity influence by contralateral ear sound stimulation. Exp Neurol. 59:62–74PubMedGoogle Scholar
  56. [56]
    Burns EM, Strickland EA, Tubis A, Jones K (1984) Interactions among spontaneous emissions. I. Distortion products and linked emissions. Hear Res 16:271–278PubMedGoogle Scholar
  57. [57]
    Burns EM, Strickland EA, Jones K, Tubis A (1984) The relationship of threshold fine structure to spontaneous otoacoustic emissions. J Acoust Soc Am 75[Suppl I]:82Google Scholar
  58. [58]
    Canlon B, Cartaud J, Changeux JP (1990) Localization of α-Bungarotoxin sites on outer hair cells. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 119Google Scholar
  59. [59]
    Canlon B, BrUndin L (1991) Mechanically induced length changes of isolated outer hair cells are metabolically dependent. Hear Res 53:7–16PubMedGoogle Scholar
  60. [60]
    Canlon B, Homburger V, Bockaert J (1991) The identification and localization of the guanine nucleotide binding protein Go in the auditory system. J Neurosci 3:1338–1342Google Scholar
  61. [61]
    Chevalier J, Ripoche P, Pisam M, Bourget J, Hugon JS (1976) A time course study of water permeability and morphological alterations induced by mucosal hyperosmolarity in frog urinary bladder. Cell Tiss Res 154:345–356Google Scholar
  62. [62]
    Cody AR, Johnstone BU (1982) Temporary threshold shift modified by binaural acoustic stimulation. Hear Res 6:199–205PubMedGoogle Scholar
  63. [63]
    Cody AR, Russell IJ (1988) Acoustically induced hearing loss: intracellular studies in the guinea pig cochlea. Hear Res 35:59–70PubMedGoogle Scholar
  64. [64]
    Collingridge GI, Herron CE, Lester RAJ (1988) Frequency-dependent N-methyl-D-aspartate receptor-mediated synaptic transmission in rat hippocampus. J Physiol (Lond) 399:301–312Google Scholar
  65. [65]
    Comis SD, Leng G (1979) Action of putative neurotransmitters in the guinea pig cochlea. Exp Brain Res 36:119–128PubMedGoogle Scholar
  66. [66]
    Comis SD, Rhys-Evans PH, Osborne MP et al. (1986) Early morphological and chemical changes induced by cisplatin in the guinea pig organ of Corti. J Larnygol Otol 100:1375–1383Google Scholar
  67. [67]
    Comis SD, Osborne MP, Jeffries DJr. (1990) Effect of furo-semide upon morphology of hair bundles in guinea pig cochlea hair cells. Acta Otolaryngol (Stockh) 109:49–56Google Scholar
  68. [68]
    Conboy JG (1993) Structure, function and molecular genetics of erythroid membrane skeletal protein 4.1 in normal and abnormal red blood cells. Sem Hematol 30:58–73Google Scholar
  69. [69]
    Corey DP, Hudspeth AJ (1979) Response latency of vertebrate hair cells. Biophys J 26:499–506PubMedGoogle Scholar
  70. [70]
    Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bull frog saccular hair cells. Eur J Neurosci 3:962–976Google Scholar
  71. [71]
    Covell WP (1938) A cytologic study of the effects of drugs on the cochlea. Arch Otolaryngol 23:633–641Google Scholar
  72. [72]
    Crann SA, Huang MY, McLaren JD et al. (1992) Formation of a toxic metabolite from gentamicin by a hepatic cytolsolic fraction. Biochem Pharmacol 43:1835–1839PubMedGoogle Scholar
  73. [73]
    Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol (Lond) 364:359–379Google Scholar
  74. [74]
    Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J Physiol 434:369–398PubMedGoogle Scholar
  75. [75]
    Dallmayr C (1985) Spontane otoakustische Emissionen: Statistik und Reaktion auf akustische Störtöne. Acustica 63:67–75Google Scholar
  76. [76]
    Dallmayr C (1987) Stationary and dynamic properties of simultaneous evoked otoacoustic emissions (SEOAE). Acoustica 59:243–255Google Scholar
  77. [77]
    Dallos PA (1985) Response characteristics of mammalian cochlear hair cells. Eur J Neurosci 5:1591–1608Google Scholar
  78. [78]
    Dallos P (1992) The actice cochlea. Eur J Neurosci 12:4575–4585Google Scholar
  79. [79]
    Dallos P, Cheatham MA (1976) Compound action potential (CAP) tuning curves. J Acoust Soc Am 59:591–597PubMedGoogle Scholar
  80. [80]
    Dallos R, Harris D (1978) Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 41:365–383PubMedGoogle Scholar
  81. [81]
    Dallos P, Santos-Sacchi J, Flock A (1982) Intracellular recordings from cochlear outer hair cells. Science 218:582–584PubMedGoogle Scholar
  82. [82]
    Dannhof BJ, Bruns V (1991) The organ of Corti in the bat Hipposideros bicolor. Hear Res 53:253–268PubMedGoogle Scholar
  83. [83]
    Davis H, Morgan CT, Hawkins JE, Galambos R, Smith F (1950) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol (Stockh) 88 [Suppl]: 58Google Scholar
  84. [84]
    Deer B, Hunter-Duvar I (1982) Salicylate ototoxicity in the chinchilla: A behavorial and electronmicroscope study. J Otolaryngol 11:260–264PubMedGoogle Scholar
  85. [85]
    Delb W, Feilen S, Koch A, Federspil P (1983) Vergleichende Untersuchungen zur Ototoxizität des Cisplatins und des Carboplatins. Laryngol Rhinol Otol (Stuttg) 72:24–27Google Scholar
  86. [86]
    Didier A, Nuttall AL, Miller J (1990) Sodium salicylate induced blood flow changes and hearing losses in the guinea pig cochlea. Proc Annu Meet Assoc Res Otlaryngol, St. Petersburg B/FL, p 310Google Scholar
  87. [87]
    Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell surface cisternae and electromotility. J Neurocytol 20:637–653PubMedGoogle Scholar
  88. [88]
    Dohlman GF (1965) The mechanism of secretion and absorption of endolymph in vestibular apparatus. Acta Otolaryngol (Stockh) 59:275–288Google Scholar
  89. [89]
    Douek E, Dodson H, Bannister L (1983) The effects of sodium salicylate on the cochlea of the guinea pig. J Larnygol Otol 93:793–799Google Scholar
  90. [90]
    Drenckhahn D, Kellner J, Mannherz HG, Gröschel-Steward U, Kendrick-Jones J, Scholey J (1982) Absence of myosin in stereocilia of hair cells. Nature 300:351–532Google Scholar
  91. [91]
    Drenckhahn D, Schäfer T, Prinz M (1985) Actin, myosin and associated proteins in the vertebrate auditory and vestibular organs. In: Drescher D, Thomas CC (eds) Auditory biochemistry. Thomas CC, Springfield/IL, pp 317–335Google Scholar
  92. [92]
    Drescher MJ, Drescher DG, Medina JE (1983) Effect of sound stimulation at several levels on concentrations of primary amines, including neurotransmitter candidates, in perilymph of the guinea pig inner ear. J Neurochem 41: 309–320PubMedGoogle Scholar
  93. [93]
    Dulon D, Aran JM, Schacht J (1988) Potassium-depolarization induces motility in outer hair cells by an osmotic mechanism. Hear Res 32:123–130PubMedGoogle Scholar
  94. [94]
    Dulon D, Aurousseau C, Erre JP, Aran JM (1988) Relationship between the nephrotoxicity and ototoxicity induced by gentamycin in the guinea pig. Acta Otolaryngol (Stockh) 106:219–225Google Scholar
  95. [95]
    Dulon D, Zajic G, Aran JM et al. (1989) Aminoglycoside antibiotics impair calcium-entry but not viability and motility of cochlear outer hair cells. Eur J Neurosci Res 24:338–346Google Scholar
  96. [96]
    Dulon D, Zajic G, Schacht J (1991) Differential motile response of isolated inner and outer hair cells to stimulation by potassium and calcium ions. Hear Res 52:225–232PubMedGoogle Scholar
  97. [97]
    Eastman A (1986) Réévaluation of interaction of cisdichlo-ro-(ethylendiamine)-platinum (II) with DNA. Biochemistry 25:3912–3915PubMedGoogle Scholar
  98. [98]
    Eckenstein F, Sofroniew MV (1983) Identification of central cholinergic neurons containing both choline acetyl-transferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. Eur J Neurosci 3:2286–2291Google Scholar
  99. [99]
    Ehrenberger K, Benkoe E, Felix D (1982) Suppressive action of picrotoxin, a GABA antagonist, on labyrinthine spontaneous nystagmus and vertigo in man. Arch Otorhinolaryngol 93:269–273Google Scholar
  100. [100]
    Ehrenberger K, Felix D (1991) Glutamate receptors in afferent cochlear neurotransmission in guinea pigs. Hear Res 52:73–80PubMedGoogle Scholar
  101. [101]
    Eisenberg BR, Eisenberg RS (1982) The T-SR junction in contracting single skeletal muscle fibers. J Gen Physiol 79:1–19PubMedGoogle Scholar
  102. [102]
    Elberling C, Parbo J, Johnson NJ, Bagi P (1985) Evoked acoustic emission: Clinical application. Acta Otolaryngol (Stockh) 421:77–85Google Scholar
  103. [103]
    Erwall C, Bagger-Sjöbäck D, Rask-Andersen H (1988) Effects of ototoxic diuretics (loop diuretics) on the endolymphatic sac. ORL 50:42–53PubMedGoogle Scholar
  104. [104]
    Erwig H, Blömer E, Bauer HH (1991) Zur Evaluation transitorisch evozierter otoakustischer Emissionen bei Kindern mit Tubenventilationsstörungen. Laryngo Rhino Otol (Stuttg) 70:635–640Google Scholar
  105. [105]
    Escoubet B, Amsallem P, Ferray E et al. (1985) Prostaglandin synthesis by the cochlea of the guinea pig: Influence of aspirin, gentamycin and acoustic stimulation. Prostaglandins 29:589–599PubMedGoogle Scholar
  106. [106]
    Evans EF (1974) Auditory frequency selectivity and the cochlear nerve. In: Zwicker E, Terhard E (eds) Facts and models in hearing. Springer, Berlin Heidelberg New York, pp 118–129Google Scholar
  107. [107]
    Evans EA, Klinke R (1982) The effects of intracochlear and systemic furosemide on the properties of single cochlear nerve fibers in the cat. J Physiol 331:409–428PubMedGoogle Scholar
  108. [108]
    Evans EF (1992) Auditory processing of complex sounds: an overview. Phil Trans R Soc Lond 336:295–306Google Scholar
  109. [109]
    Evans EF, Wilson JP (1975) Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 190:1218–1221PubMedGoogle Scholar
  110. [110]
    Evans EF, Harrison RV (1976) Correlation between cochlear outer hair cell damage and deterioration of cochlear nerve tuning properties in the guinea pig. J Physiol (Lond) 256:43–48Google Scholar
  111. [111]
    Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73/2:309–373Google Scholar
  112. [112]
    Eybalin M, Pujol R (1983) A radioautographic study of 3H-L-glutamate and 3H-L-Glutamine uptake in the guinea pig cochlea. Neuroscience 9:863–871PubMedGoogle Scholar
  113. [113]
    Eybalin M, Pujol R (1984) Immunofluorescence with metenkephalin and leu-enkephalin antibodies in the guinea pig cochlea. Hear Res 13:135–140PubMedGoogle Scholar
  114. [114]
    Eybalin M, Cupo AA, Pujol R (1984) Met-enkephalin characterization in the cochlea: High-performance liquid chromatography and immunoelectron microscopy. Brain Res 305:313–322PubMedGoogle Scholar
  115. [115]
    Eybalin M, Pujol R (1987) Choline acetyltransferase (ChAT) immunelectron microscopy distinguishes at least three types of efferent synapses in the organ of Corti. Exp Brain Res 65:261–270PubMedGoogle Scholar
  116. [116]
    Eybalin M, Rebillard G, Jarry T, Cupo A (1987) Effect of noise level on the Met-enkephalin content of guinea pig cochlea. Brain Res 418:189–192PubMedGoogle Scholar
  117. [117]
    Eybalin M, Altschuler RA (1990) Immunelectron microscopic localization of neurotransmitters in the cochlea. J Electr Microsc Technique 15:209–224Google Scholar
  118. [118]
    Eybalin M, Renard N, Ottersen OP, Storm-Mathisen J, Pujol R (1991) Ultrastructural immunolocalization of glutamate in the guinea pig organ of Corti. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 18Google Scholar
  119. [119]
    Fagg GF (1985) L-Glutamate, excitatory amino-acid receptors and brain functions. Trends Neurosci 8:207–210Google Scholar
  120. [120]
    Falbe-Hansen J (1941) Clinical and experimental histological studies of the effect of salicylates and quinine on the ear. Acta Otolaryngol (Stockh) 44 [Suppl]:1–216Google Scholar
  121. [121]
    Fechter LD, Youg JS, Carlisle L (1988) Potentiation of noise induced threshold shifts and hair cell loss by carbon monoxide. Hear Res 34:39–48PubMedGoogle Scholar
  122. [122]
    Federspil P, Mausen H (1973) Experimentelle Untersuchungen zur Ototoxizität des Furosemids. Res Exp Med 161:175–184Google Scholar
  123. [123]
    Federspil P (1981) Experimentelle Untersuchungen zur Ototoxizität der Aminoglykosid-Antibiotika und ihre klinische Bedeutung. Laryngol Rhinol Otol (Stuttg) 60: 553–557Google Scholar
  124. [124]
    Federspil P (1994) Toxische Schäden des Innenohres. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Larnygologie in Praxis und Klinik. Thieme, Stuttgart, S 782–796Google Scholar
  125. [125]
    Felix D, Ehrenberger K (1985) The action of putative neurotransmitter substances in the mammalian labyrinth. In: Drescher DG (ed) Auditory biochemistry. Thomas CC, Springfield/IL, pp 68–79Google Scholar
  126. [126]
    Felix D, Ehrenberger K (1990) A microiontophoretic study of the role of excitatory amino acids at the afferent synapses of mammalian inner hair cells. Eur Arch Otorhinolaryngol 248:1–3PubMedGoogle Scholar
  127. [127]
    Felix D, Ambühl P, Ehrenberger K (1991) The efferent modulation of inner hair cell afférents. Workshop Inner Ear Biol, Tübingen, p 42Google Scholar
  128. [128]
    Fex J (1968) Efferent inhibition in the cochlea by the olivocochlear bundle. In: de Reuck AVS, Knight J (eds) Hearing mechanisms in vertebrates. Ciba Foundation Symposium. Churchill, London pp 169–186Google Scholar
  129. [129]
    Fex J (1973) Neuropharmacology and potentials of the inner ear. In: Moller AR (ed) Basic mechanisms in hearing. Academic Press, New York London, pp 169–186Google Scholar
  130. [130]
    Fex J, Wenthold RJ (1976) Choline acetyltransferase, glutamate decarboxylase und tyrosine hydroxylase in the cochlea and cochlear nucleus of the guinea pig. Brain Res 109:575–585PubMedGoogle Scholar
  131. [131]
    Fex J, Altschuler RA (1981) Enkephalin-like immunoreactivity of olivocochlear nerve fibers in cochlea of guinea pig and cat. Proc Natl Acad Sci USA 78:1255–1259PubMedGoogle Scholar
  132. [132]
    Fex J, Altschuler RA (1984) Glutamic acid decarboxylase immunoreactivity of cochlear neurons in the organ of Corti of guinea pig and rat. Hear Res 15:123–131PubMedGoogle Scholar
  133. [133]
    Fex J, Altschuler RA (1985) Immunohistochemistry of the mammalian cochlea: Results and expectations. In: Drescher DG (ed) Auditory biochemistry. Thomas CC, Springfield/IL, pp 5–30Google Scholar
  134. [134]
    Fitzgerald JJ, Robertson D, Johnstone BM (1993) Effects of intracochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig. Hear Res 67:147–156PubMedGoogle Scholar
  135. [135]
    Fleischer K (1956) Histologische und audiometrische Studie über altersbedingten Struktur-und Funktionswandel des Innenohres. Arch Ohren Nasen Kehlkopf Heilkd 170:142–167Google Scholar
  136. [136]
    Fleischman RW, Stadnicki, Ethier MF, Schaeppi U (1975) Ototoxicity of cis-dichlorodiammine Platinum (II) in the guinea pig. Toxicol Appl Pharmacol 33:320–332PubMedGoogle Scholar
  137. [137]
    Flock A, Cheung H (1977) Actin filaments in sensory hairs of inner ear receptor cells. Arch Otorhinolaryngol 230:339–343Google Scholar
  138. [138]
    Flock A, Cheung CH, Flock B, Utter G (1981) Three sets of actin filaments in sensory cells of the inner ear. Identification and functional orientation determined by gel electrophoresis, immunfluorescence and electron microscopy. J Neurocytol 10:133–147PubMedGoogle Scholar
  139. [139]
    Flock A, Bretscher A, Weber K (1982) Immunhistochemical localization of several cytoskeletal proteins in inner sensory and supporting cells. Hear Res 6:75–89Google Scholar
  140. [140]
    Flock A, Orman S (1983) Micromechanical properties of sensory hairs on receptor cells of the inner ear. Hear Res 11:249–260PubMedGoogle Scholar
  141. [141]
    Flock A, Strelioff D (1984) Graded and nonlinear mechanical properties of sensory hairs in the mammalian hearing organ. Nature 310:597–598PubMedGoogle Scholar
  142. [142]
    Flock A, Flock B, Ulfendahl M (1986) Mechanics of movement in outer hair cells and a possible structural basis. Arch Otorhinolaryngol 243:83–90PubMedGoogle Scholar
  143. [143]
    Fonnum F (1991) Neurochemical studies on glutamate-mediated neurotransmission. In: Meldrum BS, Moroni F, Woods JH (eds) Excitatory amino acids. Raven, New York, pp 15–25Google Scholar
  144. [144]
    Forge A (1985) Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear Res 19:171–182PubMedGoogle Scholar
  145. [145]
    Forge A (1991) A structural features of the lateral walls in mammalian cochlear of outer hair cells. Cell Tissue Res 265:473–483PubMedGoogle Scholar
  146. [146]
    Fritze W, Köhler W (1985) Frequency composition of spontaneous cochlear emissions. Arch Otorhinolaryngol 242:43–48PubMedGoogle Scholar
  147. [147]
    Fritze W, Köhler W (1986) Otoakustische Emissionen und ihre Bedeutung für die Innenohrforschung. Laryngol Rhinol Otol (Stuttg) 65:600–603Google Scholar
  148. [148]
    Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. Eur J Neuro-sci 12/3:800–809Google Scholar
  149. [149]
    Furness DN, Steyger PS, Hackney CM (1988) The organization of microtubules in cochlear hair cells. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 171Google Scholar
  150. [150]
    Furness DN, Hackney CM (1990) Comparative ultrastructure of subsurface cisternae in inner and outer hair cells of the guinea pig cochlea. Eur Arch Otorhinolaryngol 247:12–15PubMedGoogle Scholar
  151. [151]
    Galambos R (1956) Suppression of auditory nerve activity by stimultion of efferent fibers to cochlea. J Neurophysiol 19:424–437PubMedGoogle Scholar
  152. [152]
    Galley N, Klinke R, Oertel W, Pause M, Storch WH (1973) The effect of intracochlearly administered acetylcholine-blocking agents on the efferent synapses of the cochlea. Brain Res 64:55–63PubMedGoogle Scholar
  153. [153]
    Garetz, Rhee DJ, Schacht J (1993) Attenuation of gentamicin ototoxicity by glutathione. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 16:141Google Scholar
  154. [154]
    Gignonx M, Martin H, Calgfmger H (1966) Troubles cochleovestibulaire après tentative de suicide à l’aspirine. J Fr Otorhinolaryngol 15:631–635Google Scholar
  155. [155]
    Gil-Loyzaga P, Pares-Herbute N (1989) HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Dev Brain Res 48:157–160Google Scholar
  156. [156]
    Gil-Loyzaga P, Fernandez-Mateos P, Vicente-Torres MA, Remezal M et al. (1993) Effects of noise stimulation on cochlear dopamin metabolism. Brain Res 623:177–180PubMedGoogle Scholar
  157. [157]
    Gitter AH, Zenner HP, Frömter E (1986) Membrane potential and ion channels in isolated outer hair cells of guinea pig cochlea. J Otorhinolaryngol Relat Spec 48:68–75Google Scholar
  158. [158]
    Gitter AH, Zenner HP (1988) Auditory transduction steps in single inner and outer hair cells. In: Duifhuis H, Horst JW, Wit HP (eds) Basic issues in hearing. Academic Press, London, pp 32–41Google Scholar
  159. [159]
    Gitter AH, Zenner HP (1988) Mikrochirurgisch gewonnene lebende innere Haarzellen erlauben Messungen von Ionenkanälen und Zellpotential. Laryngol Rhinol Otol (Stuttg) 67:611–615Google Scholar
  160. [160]
    Gitter AH, Klinke R (1989) Die Energieschwellen von Auge und Ohr in heutiger Sicht. Naturwissenschaften 76:160–164Google Scholar
  161. [161]
    Gitter AH, Frömter E, Zenner HP (1992) C-potassium channels in the lateral wall membrane of guinea pig outer hair cells. Hear Res 60:13–19PubMedGoogle Scholar
  162. [162]
    Godfrey DA, Carter JA, Berger SI, Matschinsky FM (1976) Levels of putative transmitter amino acids in the guinea pig cochlea. J Histochem Cytochem 24:468–470PubMedGoogle Scholar
  163. [163]
    Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond (Biol) 135:492–498Google Scholar
  164. [164]
    Goldmann WJ, Bielinski TC, Mattis PA (1973) Cochlear microphonic potential response of the dog to diuretic compounds. Toxicol Appl Pharmcol 25:259–266Google Scholar
  165. [165]
    Goldstein AJ, Mizukoshi O (1967) Separation of the organ of Corti into its component cells. Ann Otol Rhinol Larnygol 76:414–426Google Scholar
  166. [166]
    Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1-f2. Proc IEEE 56:981–999Google Scholar
  167. [167]
    Gratton MA, Salvi RJ, Kamen BA, Saunders SS (1990) Interaction of cisplatin and noise on the peripheral auditory system. Hear Res 50:221–224Google Scholar
  168. [168]
    Gulley RL, Reese TS (1977) Regional spezialization of the hair cell plasmalemma in the organ of corti. Anat Rec 189:109–123PubMedGoogle Scholar
  169. [169]
    Gummer AW, Hemmert W, Morioka I, Reis P, Reuter G, Zenner HP (1993) Cellular motility measured in the guinea-pig cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific, Singapore, pp 229–239Google Scholar
  170. [170]
    Hackney CM, Furness DN, Mahendrasingam S (1993) The mechano-transduction channels in cochlear hair cells may be released by antibodies which recognize other amiloride-sensitive channels. In: Duifhuis H, Horst JW, Dijk P, Netten SM van (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific, Singapore, pp 107–115Google Scholar
  171. [171]
    Hallpike CS, Cairns H (1938) Observations on the pathology of Ménière’s syndrome. Proc R Soc Med 31:1317–1336PubMedGoogle Scholar
  172. [172]
    Hamill OP, Lane JW, McBride DW (1992) Amiloride: a molecular probe for mechanosensitive channels. Trends Pharmacol Sci 13:373–376PubMedGoogle Scholar
  173. [173]
    Harris FP (1990) Distortion-product otoacoustic emissions in humans with high frequency sensorineural hearing loss. J Speech Hear Res 33:594–600PubMedGoogle Scholar
  174. [174]
    Harris FP, Lonsbury-Martin BL, Stagner BB, Coats AC, Martin GK (1989) Acoustic distortion products in humans: systematic changes in amplitudes as a function of f2/f1 ratio. J Acoust Soc Am 85:220–229PubMedGoogle Scholar
  175. [175]
    Harris FP, Probst R (1992) Transiently evoked otoacoustic emissions in patients with Ménière’s disease. Acta Otolaryngol (Stockh) 112:36–44Google Scholar
  176. [176]
    Harris FP, Probst R, Plinkert P, Xu L (1993) Influence of interference tones on 2f1-f2 acoustic distortion products. In: Duifhuis H, Horst JW, Dijk Netten van SM (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific Singapore, pp 87–93Google Scholar
  177. [177]
    Hauser R (1992) Die Wirkung der systematischen Mittelohrdruckänderung auf transitorisch evozierte otoakustische Emissionen — eine Druckkammerstudie. Laryngol Rhinol Otol (Stuttg) 71:632–636Google Scholar
  178. [178]
    Hauser R, Probst R (1991) The influence of systematic primary tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears. J Acoust Soc Am 89:280–286PubMedGoogle Scholar
  179. [179]
    Hauser R, Probst R, Harris P (1991) Die klinische Anwendung otoakustischer Emissionen kochleärer Distorsions-produkte. Laryngo Rhino Otol (Stuttg) 70:123–131Google Scholar
  180. [180]
    Hauser R, Probst R, Harris FP (1993) Effects of atmospheric pressure variation on spontaneous, transiently evoked, and distortion product otoacoustic emissions in normal human ears. Hear Res 69:133–145PubMedGoogle Scholar
  181. [181]
    Hawkins JE Jr. (1976) Drug ototoxicity. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. Vol. V: Auditory system. Springer, Berlin Heidelberg New York, pp 707–748Google Scholar
  182. [182]
    Hayashida T, Hiel H, Dulon D, Erre JP, Guilhaume A, Aran JM (1989) Dynamic changes following combined treatment with gentamicin and ethacrynic acid with and without acoustic stimulation. Acta Otolaryngol (Stockh) 108:404–413Google Scholar
  183. [183]
    Hazell JWP (1987) A cochlear model for tinnitus. In: Feldmann H (Hrsg) Proc III International Tinnitus Seminar, Münster. Harsch, Karlsruhe, pp 121–128Google Scholar
  184. [184]
    Heidland H, Wigand ME (1970) The effects of furosemide at high doses on auditory sensitivity in patients with uremia. Klin Wochenschr 48:1052–1056PubMedGoogle Scholar
  185. [185]
    Helmholtz H (1870) Die Lehre von den Tonempfindungen, als physiologische Grundlage für die Theorie der Musik. Vieweg 8c Sohn, BraunschweigGoogle Scholar
  186. [186]
    Hemmert W, Morioka I, Reuter G, Zenner HP, Gummer AW (im Druck) Akustisch und elektrisch induzierte Bewegungen zellulärer Strukturen im Cortischen Organ des Meerschweinchens DAGA 1994Google Scholar
  187. [187]
    Hinz M, Wedel H von (1984) Otoakustische Emissionen bei Patienten mit Hörsturz. Arch Otorhinolaryngol [Suppl II]:128–130Google Scholar
  188. [188]
    Hodgkin AL, Horowicz P (1960) Potassium contractures in single muscle fibers. J Physiol (Lond) 153:386–403Google Scholar
  189. [189]
    Hoffmann DW, Rubio JA, Altschuler RA, Fex J (1984) Several distinct receptor binding enkephalins in olivocochlear fibers and terminals in the organ of Corti. Brain Res 322:59–65Google Scholar
  190. [190]
    Hoffman DW, Zamir N, Rubio JA, Altschuler RA, Fex J (1985) Proenkephalin and prodynorphin-related neuropeptides in the cochlea. Hear Res 17:47–50PubMedGoogle Scholar
  191. [191]
    Hoffman DW, Whitworth CA, Jones KL, Rybak LP (1987) Nutritional status, glutathione levels, and ototoxicity of loop diuretics and aminoglycoside antibiotics. Hear Res 31:217–222PubMedGoogle Scholar
  192. [192]
    Hoffman DW, Jones-King KL, Altschuler RA (1988) Putative neurotransmitters in the rat cochlea at several ages. Brain Res 460:366–368PubMedGoogle Scholar
  193. [193]
    Hoffman DW, Edkins RD, Jones-King KL (1989) Release of enkephalins and dynorphins at the olivocochlear synapses in the cochlear. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 344Google Scholar
  194. [194]
    Hoffman DW, Gardner PD, Altschuler RA (1992) Localization of enkephalin-synthesizing cells in rat auditory brainstem by in-situ hybridization. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 12Google Scholar
  195. [195]
    Holley MC, Ashmore JF (1988) On the mechanism of a high-frequency force generator in outer hair cells isolated from the guinea pig cochlea. Proc R Soc Lond (Biol) 232:413–429Google Scholar
  196. [196]
    Holley MC, Ashmore JF (1990) Spectrin, actin and the structure of the cortical lattice in mammalian cochlear outer hair cells. J Cell Sci 96:283–291PubMedGoogle Scholar
  197. [197]
    Holley MC, Kalinec F, Kachar B (1992) Structure of the cortical cytoskeleton in mammalian outer hair cells. J Cell Sci 102:569–580PubMedGoogle Scholar
  198. [198]
    Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bull-frog characterized by noise analysis. J Physiol (Lond) 375:195–227Google Scholar
  199. [199]
    Horner KC (1991) Old theme and new reflections: Hearing impairment associated with endolymphatic hydrops. Hear Res 52:147–156PubMedGoogle Scholar
  200. [200]
    Horner KC, Guillaume A, Cazals Y (1989) Atrophy of short and middle sterocilia on outer hair cells of guinea pig cochleas with experimentally induced hydrops. Hear Res 32:41–48Google Scholar
  201. [201]
    Horner KC, Cazals Y (1989) Distortion products in early stage experimental hydrops in the guinea pig. Hear Res 43:71–80PubMedGoogle Scholar
  202. [202]
    Horst JW, Wit HP, Ritsma RJ (1983) Psychophysiological aspects of cochlear acoustic emissions. In: Klinke R, Hartmann R (eds) Hearing — physiological bases and psychophysics. Springer, Berlin Heidelberg New York Tokyo pp 89–96Google Scholar
  203. [203]
    Hostetier KY, Hall LB (1982) Aminoglycoside antibiotics inhibit lysosomal phospholipase A and C from rat liver in vitro. Bioch Biophys Acta 710:506–509Google Scholar
  204. [204]
    Hoth S (1993) Klinische Anwendung der transitorisch evozierten otoakustischen Emissionen zur therapiebegleitenden Verlaufskontrolle. HNO 41:135–145PubMedGoogle Scholar
  205. [205]
    Hoth S, Lenarz T (1993) Otoakustische Emissionen — Grundlagen und Anwendung. Thieme, StuttgartGoogle Scholar
  206. [206]
    Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc R Soc Lond (Biol) 244:161–167Google Scholar
  207. [207]
    Housley GD, Batcher S, Kraft M, Ryan AF (1992) Detection of an acetylcholine receptor in the rat inner ear using polymerase chain reaction. Proc Symp Mol Biol Hearing and Deafness, La Jolla/CA, p 48Google Scholar
  208. [208]
    Huang MY, Schacht J (1989) Drug-induced ototoxicity: Pathogenesis and prevention. Med Toxicol Adv Drug Exp 4:452–467Google Scholar
  209. [209]
    Huang PL, Corey DP (1990) Calcium influx into hair cell stereocilia: further evidence for transduction channels at the tips. Biophys J 57 [Suppl]:530aGoogle Scholar
  210. [210]
    Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. Eur J Neurosci 2:1–10Google Scholar
  211. [211]
    Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404PubMedGoogle Scholar
  212. [212]
    Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411PubMedGoogle Scholar
  213. [213]
    Hunter-Duvar IM (1977) Morphology of the normal and the acoustically damaged cochlea. SEM 2:421–428Google Scholar
  214. [214]
    Ishii T, Bernstein J, Balogh K (1967) Distribution of tritiumlabelled salicylate in the cochlea. Ann Otol Rhinol Laryngol 76:368–476PubMedGoogle Scholar
  215. [215]
    Ishii D, Balogh K (1968) Distribution of efferent nerve endings in the organ of Corti. Their graphic reconstruction in cochleae by localization of acetylcholinesterase activity. Acta Otolaryngol (Stockh) 66:282–288Google Scholar
  216. [216]
    Iurato S (1974) Efferent innervation of the cochlea. In: Keidel WC, Neff WD (eds) Handbook of sensory physiology. Vol V/1. Springer, Berlin Heidelberg New York, pp 261–282Google Scholar
  217. [217]
    Iurato S, Luciano L, Pannese E, Reale E (1971) Acetylcholinesterase activity in the inner ear. Acta Otolaryngol Suppl (Stockh) 279:1–50Google Scholar
  218. [218]
    Iwasa K, Kachar B (1989) Fast in vitro movement of outer hair cells in an external electric field: effect of digitonin, a membrane permeabilizing agent. Hear Res 40:247–254PubMedGoogle Scholar
  219. [219]
    Jahnke K (1977) Zur Pathogenese der akuten Symptome des Morbus Ménière. Laryngol Rhinol Otol (Stuttg) 56:402–406Google Scholar
  220. [220]
    Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7:409–420PubMedGoogle Scholar
  221. [221]
    Jarlstedt J, Bagger-Sjöbäck D (1977) Gentamicin-induced changes in RNA content in sensory and ganglionic cells in the hearing organ of the lizard Calotes versicolor: A cytochemical and morphological investigation. Acta Otolaryngol 84:361–369PubMedGoogle Scholar
  222. [222]
    Jasser A, Guth PS (1973) The synthesis of acetylcholine by the olivo-cochlear bundle. J Neurochem 20:45–53PubMedGoogle Scholar
  223. [223]
    Jen DH, Steele CR (1987) Electrokinetic model of cochlear hair cell motility. J Acoust Soc Am 82:1667–1678PubMedGoogle Scholar
  224. [224]
    Jenison GL, Bobbin RP (1985) Quisqualate excites spiral ganglion neurons of the guinea pig. Hear Res 20:261–265PubMedGoogle Scholar
  225. [225]
    Jenison GL, Winbery S, Bobbin RP (1986) Comparative actions of quisqualate and N-methy-D-aspartate, excitatory amino acid agonists, on guinea pig cochlear potentials. Comp Biochem Physiol 84:385–389Google Scholar
  226. [226]
    Johnsen NL, Elberling C (1982) Evoked acoustic emissions from the human ear. I. Equipment and response parameters. Scand Audiol 11:3–12PubMedGoogle Scholar
  227. [227]
    Johnsen NJ, Elberling C (1982) Evoked acoustic emissions from the human ear. II. Normative data in adults and influence of posture. Scand Audiol 11:69–77PubMedGoogle Scholar
  228. [228]
    Jones K, Tubis A, Long GR, Burns EM, Strickland EA (1986) Interactions among multiple spontaneous otoacoustic emissions. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer, Berlin Heidelberg New York Tokyo pp 266–273Google Scholar
  229. [229]
    Jones N, Fex J, Altschuler RA (1987) Tyrosine hydroxylase immunoreactivity identifies possible catecholaminergic fibers in the organ of Corti. Hear Res 30:33–38PubMedGoogle Scholar
  230. [230]
    Jorgensen F, Ohmori H (1988) Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J Physiol (Lond) 403:577–588Google Scholar
  231. [231]
    Jung T, Miller S, Mowery G et al. (1991) Effect of leukotriene inhibitor (I-663536) on metabolites in salicylate ototoxicity. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 73Google Scholar
  232. [232]
    Jung T, Park Y, Miller S et al. (1992) Effect of exogenous arachidonic acid metabolites applied on round window membrane on hearing and their levels in the perilymph. Acta Otolaryngol (Stockh) 493 [Suppl]:171–176Google Scholar
  233. [233]
    Jung TTK, Rhee CK, Lee CS, Park YS, Choi DC (1993) Ototoxicity of salicylate, nonsteroidal antiinflammatory drugs and quinine. Otolaryngol Clin North Am 26:791–810PubMedGoogle Scholar
  234. [234]
    Kachar B, Brownell WE, Altschuler RA, Fex J (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:365–368PubMedGoogle Scholar
  235. [235]
    Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci USA 89:8671–8675PubMedGoogle Scholar
  236. [236]
    Kalinec F, Jaeger RG, Kachar B (1993) Mechanical coupling of the outer hair cell membrane to the cortical cytoskeleton by anion exchanger and 4.1 proteins. In: Duifhuis H, Horst JW, Dijk P van, Netten SM van (eds) Proc Intl Symp Biophysics of Hair Cell Sensory Systems. World Scientific Singapore, pp 175–181Google Scholar
  237. [237]
    Keiner S, Zimmermann U (im Druck) Glutathione inhibits the effects of gentamicin in outer hair cell (QHC) of guinea pig cochlea. ORL 250Google Scholar
  238. [238]
    Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391PubMedGoogle Scholar
  239. [239]
    Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45PubMedGoogle Scholar
  240. [240]
    Kemp DT (1980) Towards a model for the origin of cochlear echoes. Hear Res 2:533–548PubMedGoogle Scholar
  241. [241]
    Kemp DT (1981) Physiologically active cochlear micromechanics — one source of tinnitus. In: Tinnitus. Ciba Foundation Symposium, Pitman, London, pp 54–81Google Scholar
  242. [242]
    Kemp DT (1982) Cochlear echoes: Implications for noiseinduced hearing loss. In: Hamernik RP, Henderson D, Salvi R (eds) New perspectives on noise-induced hearing loss. Raven, New York, pp 189–207Google Scholar
  243. [243]
    Kemp DT (1986) Otoacoustic emissions, travelling wave and cochlear mechanisms. Hear Res 23:95–104Google Scholar
  244. [244]
    Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions — two-tone suppression. In: Van den Brink RM, Bilsen FA (eds) Psychophysical, physiological and behavioral studies in hearing, Elft Univ. Press, Delft, pp 34–42Google Scholar
  245. [245]
    Kemp DT, Brown AM (1984) Ear canal acoustic and round window electrical correlates of 2f1-f2 distorsion generated in the cochlea. Hear Res 13:39–46PubMedGoogle Scholar
  246. [246]
    Kemp DT, Bray P, Alexander L, Brown AM (1986) Acoustic emission cochleography — practical aspects. Scand Audiol 25 [Suppl] 71–82Google Scholar
  247. [247]
    Kemp DT, Ryan S, Bray P (1990) A guide to the effective use of otoacoustic emissions. Ear Hear 11:93–105PubMedGoogle Scholar
  248. [248]
    Khanna SM (1989) Cellular vibration and motility in the organ of Corti. Acta Otolaryngol 467 [Suppl] 11–279Google Scholar
  249. [249]
    Khanna SM, Leonhard DG (1982) Laser interferometric measurements of basilar membrane vibrations in cats. Science 215:305–306PubMedGoogle Scholar
  250. [250]
    Kiang NYS, Moxon EC, Levine RA (1970) Auditory-nerve activity in cats with normal and abnormal cochlea. In: Wolstenholme EGW, Knight J (eds) Sensorineural hearing loss. Livingstone, New York, pp 241–268Google Scholar
  251. [251]
    Kim DO (1980) Cochlear mechanics: Implication of electrophysiological and acoustical observations. Hear Res 2:297–317PubMedGoogle Scholar
  252. [252]
    Kim DO (1986) Active and nonlinear cochlear biomechanics and the role of outer-hair-cell subsystem in the mammalian auditory system. Hear Res 22:105–114PubMedGoogle Scholar
  253. [253]
    Kim DO, Molnar CE, Matthews JW (1980) Cochlear mechanics: Nonlinear behavior in two-tone responses as reflected in cochlear-nerve-fiber responses and in earcanal pressure. J Acoust Soc Am 67:1704–1721PubMedGoogle Scholar
  254. [254]
    Kimura RS (1982) Animal models of endolymphatic hydrops. Am J Otolaryngol 3:447–451PubMedGoogle Scholar
  255. [255]
    Klinke R (1981) Neurotransmitters in the cochlea and the cochlear nucleus. Acta Otolaryngol (Stockh) 91:541–554Google Scholar
  256. [256]
    Klinke R (1986) Neurotransmission in the inner ear. Hear Res 22:235–243PubMedGoogle Scholar
  257. [257]
    Klinke R, Galley N (1974) Efferent innervation of vestibular and auditory receptors. Physiol Rev 54:316–357PubMedGoogle Scholar
  258. [258]
    Klinke R, Oertel W (1977) Evidence that GABA is not the afferent transmitter in the cochlea. Exp Brain Res 28:311–314PubMedGoogle Scholar
  259. [259]
    Knipper M, Zimmermann U, Köpschall I, Rohbock K, Jüngling S, Zenner HP (im Druck) Immunological identification of candidate proteins involved in regulating proteins of isolated outer hair cells. Hear ResGoogle Scholar
  260. [260]
    Koch T, Gloddek B (1991) Inhibition of adenylate-cyclase-coupled G protein complex by ototoxic diuretics and cisplatinum in the inner ear of the guinea pig. Eur Arch Otorhinolaryngol 248:459–464PubMedGoogle Scholar
  261. [261]
    Komune S, Asakuma S, Snow JB (1981) Pathophysiology of ototoxicity of cis-diaminedichloroplatinum. Otolaryngol Head Neck Surg 89:275–282PubMedGoogle Scholar
  262. [262]
    Konishi T (1979) Some observations on negative endo-cochlear potential during anoxia. Acta Otolaryngol 87:506–516PubMedGoogle Scholar
  263. [263]
    Konishi T, Gupta BN, Prazma J (1983) Ototoxicity of cisdichlorodiamine platinum (II) in guinea pigs. Am J Otolaryngol 4:18–26PubMedGoogle Scholar
  264. [264]
    Kroese ABA, Das A, Hudspeth AJ (1989) Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hear Res 37:203–218PubMedGoogle Scholar
  265. [265]
    Kros CJ, Rüsch A, Richardson GP (1982) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc R Soc Lond B 249:185–193Google Scholar
  266. [266]
    Kujawa SG, Fallon M, Bobbin RP (1992) Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear Res 64:73–80PubMedGoogle Scholar
  267. [267]
    Kumpf W, Hoke M (1970) Ein konstantes Ohrgeräusch bei 4 000 Hz. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 196:243–247PubMedGoogle Scholar
  268. [268]
    Kuriyama H, Shiosaka S, Sekitani M, Tohyama Y et al. (1990) Electron microscopic observation of calcitonin gene-related peptide-like immunoreactivity in the organ of Corti of the rat. Brain Res 517:76–80PubMedGoogle Scholar
  269. [269]
    Lamprecht A (1991) Evozierte otoakustische Emissionen bei normalhörenden und schwerhörigen Erwachsenen und Kindern. Laryngol Rhinol Otol (Stuttg) 70:1–4Google Scholar
  270. [270]
    Laubert A, Lehnhardt E (1993) Hörstörungen im Alter. In: Platt D, Haid T (Hrsg) Handbuch der Gerontologie. 6 Hals-Nasen-Ohren-Heilkunde. Fischer, Stuttgart, S 130–166Google Scholar
  271. [271]
    Laurell G, Bagger-Sjöbäck D (1991) Degeneration of the organ of Corti following intravenous administration of cisplatin. Acta Otolaryngol (Stockh) 111:891–898Google Scholar
  272. [272]
    Lazarides E, Revel JP (1979) The molecular basis of cell movement. Sci Am 240:100–113PubMedGoogle Scholar
  273. [273]
    Lehnhardt E (1984) Klinik der Innenohrschwerhörigkeit. Arch Otorhinolaryngol 58[Suppl I]:58–218Google Scholar
  274. [274]
    Lehnhardt E, Koch T (1994) Altersschwerhörigkeit. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg.) Oto-Rhino-Laryngologie in Praxis und Klinik. Thieme, Stuttgart, S. 778–782Google Scholar
  275. [275]
    Lenoir M, Puel JL (1987) Dose-dependent changes in the rat cochlea following aminoglycoside intoxication. II. Histological study. Hear Res 26:199–209PubMedGoogle Scholar
  276. [276]
    LePage EW, Johnstone BM (1980) Nonlinear mechanical behaviour of the basilar membrane in the basal turn of the guinea pig cochlea. Hear Res 2:183–189Google Scholar
  277. [277]
    Letens U (1988) Über die Interpretation von Impedanzmessungen im Gehörgang anhand von Mittelohrmodellen. Disseration, BochumGoogle Scholar
  278. [278]
    Levitan ES, Schofield PR, Burt R et al. (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79PubMedGoogle Scholar
  279. [279]
    Liberman MC (1990) Effects of chronic cochlear de-afferentation on auditory-nerve response. Hear Res 49:209–224PubMedGoogle Scholar
  280. [280]
    Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53PubMedGoogle Scholar
  281. [281]
    Liberman MC, Dodds LW (1984) Single-neuron labelling and chronic cochlear pathology. III. Sterocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74PubMedGoogle Scholar
  282. [282]
    Lim DJ (1986) Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review. Am J Otolaryngol 7:73–99PubMedGoogle Scholar
  283. [283]
    Lim DJ, Melnick W (1971) Acoustic damage of the cochlea. Arch Otolaryngol 94:294–305PubMedGoogle Scholar
  284. [284]
    Lim DJ, Freilich IW (1981) Ultrastucture of the stria vascularis, vestibular dark cells and endolymphatic sac following acute diuretic ototoxicity. Scand Audiol 14 [Suppl]:139–155Google Scholar
  285. [285]
    Lim DJ (1986) Functional structure of the organ of Corti: review. Hear Res 22:117–146PubMedGoogle Scholar
  286. [286]
    Lim DJ, Hanamure Y, Ohashi Y (1989) Structural organization of the outer hair cell wall. Acta Otolaryngol (Stockh) 107:398–405Google Scholar
  287. [287]
    Long G, Comis SC (1979) The effect of potassium on the activity of auditory nerve fibers of the guinea pig cochlea. Acta Otolaryngol (Stockh) 87:39–46Google Scholar
  288. [288]
    Long GR (1988) Modification of spontaneous and evoked otoacustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353PubMedGoogle Scholar
  289. [289]
    Long GR, Tubis A (1988) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353PubMedGoogle Scholar
  290. [290]
    Lonsbury-Martin BL, Martin GK, Probst R, Coats AC (1987) Acoustic distorsion products in rabbit ear canal. I. Basic features and physiological vulnerability. Hear Res 28:173–189PubMedGoogle Scholar
  291. [291]
    Lonsbury-Martin BL, Harris FP, Stagner BB, Hawkin MD, Martin GK (1990) Distorsion product emission in humans, I. Basic properties in normally hearing subjects. Ann Otol Rhinol Laryngol 147 [Suppl]:3–14Google Scholar
  292. [292]
    Lu YF (1987) Cause of 611 deaf mutes in schools for deaf children in Shanghai. Shanghai Med J 10:159Google Scholar
  293. [293]
    Luna EJ, Hitt AL (1992) Cytoskeleton-plasma membrane interactions. Science 258:955–963PubMedGoogle Scholar
  294. [294]
    Lutman ME, Mason SM, Sheppard S, Gibbin KP (1989) Differential diagnostic potential of otoacoustic emissions: a case study. Audiology 28:205–210PubMedGoogle Scholar
  295. [295]
    Mahe JF, Schreiner GE (1965) Studies on ethacrynic acid in patients with refractory edema. Ann Intern Med 62:15–29Google Scholar
  296. [296]
    Martin GK, Lonsbury-Martin BL, Probst R, Coats AC (1987) Acoustic distorsion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and puretone exposures. Hear Res 28:191–208PubMedGoogle Scholar
  297. [297]
    Martin GK, Lonsbury-Martin BL, Probst R, Coats AC (1988) Spontaneous otoacoustic emissions in a nonhuman primate. I. Basic features and relations to other emissions. Hear Res 33:49–68PubMedGoogle Scholar
  298. [298]
    Martin GK, Ohlms LA, Franklin DJ, Harris FP, Lonsbury-Martin BL (1990) Distortion product emissions in humans. III. Influence of sensorineural hearing loss. Ann Otol Rhinol Laryngol 99:30–42Google Scholar
  299. [299]
    Mathis A, DeMin N, Arnold W (1991) Transitorisch-evo-zierte otoakustische Emissionen (TEOAE) bei isolierten Hochton-, Tieften-bzw. Mitteltongehör. HNO 39:55–60PubMedGoogle Scholar
  300. [300]
    McAlpine D, Johnstone BM (1990) The ototoxic mechanism of cisplatin. Hear Rés 47:191–204PubMedGoogle Scholar
  301. [301]
    McFadden D, Plattsmier HS, Pasanen EG (1984) Aspirin-induced hearing loss as a model of sensorineural hearing loss. Hear Res 16:251–260PubMedGoogle Scholar
  302. [302]
    McFadden, Plattsmier HS (1984) Aspirin abolishes spontaneous otoacoustic emissions. J Acoust Soc Am 76:443–448PubMedGoogle Scholar
  303. [303]
    McGinn MD (1982) The effects of neonatal acoustic deprivation on the auditory neocortex of the mongolian gerbil, Meriones unguicultus. Thesis, University of CaliforniaGoogle Scholar
  304. [304]
    Mees K (1986) Medikament-Nebenwirkungen auf das Hörorgan. Laryngol Rhinol Otol (Stuttg) 65:363–370Google Scholar
  305. [305]
    Merchan-Perez A, Gil-Loyzaga P, Eybalin M (1990) Ontogeny of GAD-and GABA immunoreactivities in the rat cochlea. Eur Arch Otorhinolaryngol 248:4–7PubMedGoogle Scholar
  306. [306]
    Möhler H, Malherbe P, Sequier JM, Bannwarht W, Schoch P, Richards JG (1989) Location, structure, and sites of synthesis of the GABAA receptor in the central nervous system. In: Barnard EA, Costa E (eds) Allosteric modulation of amino acid receptors: therapeutic implications. Raven, New York, pp 31–46Google Scholar
  307. [307]
    Morgenstern C (1985) Pathophysiologie, Klinik und konservative Therapie der Ménièreschen Erkrankung. Arch Otorhinolaryngol 1 [Suppl]:1–66Google Scholar
  308. [308]
    Morgenstern C (1994) Morbus Ménière. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Praxis und Klinik. Thieme, Stuttgart, pp 768–775Google Scholar
  309. [309]
    Mountain CD (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alters cochlear mechanics. Science 210:71–72PubMedGoogle Scholar
  310. [310]
    Myers EN, Bernstein JM (1965) Salicylate ototoxicity. Arch Otolaryngol 82:483–493PubMedGoogle Scholar
  311. [311]
    Nadol JB Jr. (1983) Serial section reconstruction of the neural poles of the hair cells in the human organ of Corti. I. Inner hair cell. Laryngoscope 93:599–614PubMedGoogle Scholar
  312. [312]
    Naeve SL, Margolis RH, Levine SC, Fournier EM (1992) Effect of ear-canal pressure on evoked otoacoustic emissions. J Acoust Soc Am 91:2091–2095PubMedGoogle Scholar
  313. [313]
    Nakagawa T, Kakehata S, Akaike N et al. (1992) Effects of Ca2+ antagonists and aminoglycoside antibiotics on Ca2+ current in isolated outer hair cells of guinea pig cochlea. Brain Res 580:345–347PubMedGoogle Scholar
  314. [314]
    Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123–130PubMedGoogle Scholar
  315. [315]
    Niedzielski A, Ono T, Schacht J (1992) Cholinergic regulation of the phosphoinositide second messenger system in the guinea pig organ of Corti. Hear Res 59:250–254PubMedGoogle Scholar
  316. [316]
    Nilles R (1994) Zur Hemmung von Kalziumkanälen in Haarzellen des Innenohres. Med. Dissertation, Universität TübingenGoogle Scholar
  317. [317]
    Norris CH, Guth PS (1974) The release of acetylcholine by the olivo-cochlear bundle (COCB). Acta Otolaryngol (Stockh) 77:318–326Google Scholar
  318. [318]
    Norton SJ, Champlin CA, Mott JB (1987) The behaviour of spontaneous otoacoustic emissions from human ears following exposure to intense pur-tone stimuli. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 21Google Scholar
  319. [319]
    Norton SJ, Schmidt AR, Stover LJ (1990) Tinnitus and otoacoustic emissions: Is there a link? Ear Hear 11:159–166PubMedGoogle Scholar
  320. [320]
    Oeken J, Müller H (1994) Einsatz von DPOAE in der Begutachtung chronischer Lärmschäden. Eur Arch Otorhinolaryngol Suppl II:39–40Google Scholar
  321. [321]
    Oertel W (1978) Transmitterphysiologie der afferenten und efferenten Synapsen des Corti’schen Organs der Katze: Experimentelle Untersuchungen und Literaturübersicht. Med. Dissertation, Freie Universität BerlinGoogle Scholar
  322. [322]
    Offner FF, Dallos P, Cheatham MA (1987) Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis. Hear Res 29:117–124PubMedGoogle Scholar
  323. [323]
    Ohmori H (1987) Gating properties of the mechano-electrical transducer channel in the dissociated vestibular hair cell of the chick. J Physiol 387:589–609PubMedGoogle Scholar
  324. [324]
    Ohmori H (1988) Mechanical stimulation and FURA-2 fluorescence in the hair bundle of dissociated hair cells of the chick. J Physiol (Lond) 399:115–137Google Scholar
  325. [325]
    Ohmori H (1991) Mechano-electrical transduction in the chicken hair cell. Acta Otolaryngol (Stockh) 481 [Suppl]:1–4Google Scholar
  326. [326]
    Orman S, Flock A (1983) Active control of sensory hair mechanics implied by susceptibility to media that induce contraction in muscle. Hear Res 11:261–266PubMedGoogle Scholar
  327. [327]
    Penner MJ, Burns EM (1987) The dissociation of SOAEs and tinnitus. J Speech Hear Res 30:396–403PubMedGoogle Scholar
  328. [328]
    Penner MH, Burns EM (1987) Five empirical tests for a relation between SOAEs and tinnitus. In: Feldmann H, Proc III International Tinnitus Seminar Münster. Harsch, Karlsruhe, pp 82–85Google Scholar
  329. [329]
    Perez ME, Soto E, Vega R (1991) Streptomycin blocks the postsynaptic effects of excitatory amino acids on vestibular system primary afférents. Brain Res 563:221–226PubMedGoogle Scholar
  330. [330]
    Pickles JO, Comis SC, Osborne MP (1984) Cross-links between stereocilia in the guinea-pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–111PubMedGoogle Scholar
  331. [331]
    Pickles JO, Comis SD, Osborne MP (1987) The effect of chonic application of kanamycin on stereocilia and their tip links in hair cells of the guinea pig cochlea. Hear Res 29:237–244PubMedGoogle Scholar
  332. [332]
    Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. TINS 7:254–259Google Scholar
  333. [333]
    Pike D, Bosher SK (1980) The time course of the strial changes produced by intravenous furosemide. Hear Res 3:79–89PubMedGoogle Scholar
  334. [334]
    Plester D (1978) Die einseitige Hörstörung. Arch Otorhinolaryngol 219:451–459PubMedGoogle Scholar
  335. [335]
    Plinkert PK (1989) Cholinerge Innervation äußerer Haarzellen — Eine mögliche Bedeutung für den Diskriminationsverlust bei Perzeptionsschwerhörigkeiten. Laryngol Rhinol Otol (Stuttg) 68:450–455Google Scholar
  336. [336]
    Plinkert PK, Möhler H, Zenner HP (1989) A subpopulation of outer hair cells possess GABA-receptors with tonotopic organization. Eur Arch Otorhinolaryngol 246:417–422Google Scholar
  337. L337]
    Plinkert PK, Sesterhenn G, Arold R, Zenner HP (1990) Evaluation of otoacoustic emissions in high-risk infants as an easy and rapid objective auditory screening method. Eur Arch Otorhinolaryngol 247:356–360PubMedGoogle Scholar
  338. [338]
    Plinkert PK, Gitter AH, Zenner HP (1990) Tinnitus-associated spontaneous otoacoustic emissions — Active outer hair cell movements as common origin? Acta Otolaryngol (Stockh) 110:342–347Google Scholar
  339. [339]
    Plinkert PK, Gitter AH, Zimmermann U, Kirchner T, Tzartos S, Zenner HP (1990) Visualization and functional testing of acetylcholine receptors in cochlear outer hair cells. Hear Res 44:25–34PubMedGoogle Scholar
  340. [340]
    Plinkert PK, Arold R, Zenner HP (1990) Evozierte otoakustische Emissionen zum Hörscreening bei Säuglingen. Laryngo Rhino Otol (Stuttg) 69:108–110Google Scholar
  341. [341]
    Plinkert PK, Zenner HP (1991) Characterization and tonotopic Organization of postsynaptic receptors on mammalian outer hair cells. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 88Google Scholar
  342. [342]
    Plinkert PK, Kröber S (1991) Früherkennung einer Cisplatin-Ototoxizität durch evozierte otoakustische Emissionen. Laryngol Rhinol Otol (Stuttg) 70:457–462Google Scholar
  343. [343]
    Plinkert PK, Zenner HP, Heilbronn E (1991) A nicotinic acetylcholine receptor-like α-Bungarotoxin-binding site on outer hair cells. Hear Res 53:1–130Google Scholar
  344. [344]
    Plinkert PK, Plinkert B, Zenner HP (1992) Carbohydrates in the cell surface of hair cells from the guinea pig cochlea. Eur Arch Otorhinolaryngol 249:67–73PubMedGoogle Scholar
  345. [345]
    Plinkert PK, Lenarz T (1992) Evozierte otoakustische Emissionen und ihre Beeinflussung durch kontralaterale akustische Stimulation. Laryngol Rhinol Otol (Stuttg) 71:74–78Google Scholar
  346. [346]
    Plinkert PK, Zenner HP (1992) Sprachverständnis und otoakustische Emissionen durch Vorverarbeitung des Schalls im Innenohr. HNO 40:111–122PubMedGoogle Scholar
  347. [347]
    Plinkert PK, Gitter AH, Möhler H, Zenner HP (1993) Structure, pharmacology and function of GABAA receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol 250:351–357PubMedGoogle Scholar
  348. [348]
    Plinkert PK, Harris FP, Probst R (1993) Der Einsatz akustischer Distorsionsprodukte zur klinischen Diagnostik: Der Entstehungsort ihrer otoakustischen Emissionen im Innenohr. HNO 41:339–344PubMedGoogle Scholar
  349. [349]
    Plinkert PK, Zenner HP (1994) Aspekte der Physiologie und Pathophysiologie der Schallverarbeitung im Innenohr bei Lärmexposition. In: Dieroff HG (Hrsg) Lärmschäden des Innenohres. Fischer, Jena, S. 163–186Google Scholar
  350. [350]
    Plinkert PK, Bootz F, Voßieck T (1994) Influence of static middle ear pressure on transiently evoked otoacoustic emissions and distortion products. Eur Arch Otorhinolaryngol 251:95–99PubMedGoogle Scholar
  351. [351]
    Plinkert PK, Ptok M, Zenner HP (1994) Veränderungen von transitorisch evozierten otoakustischen Emissionen und akustischen Distorsionsprodukten bei Tubenventilationsstörungen. HNO 42:434–440PubMedGoogle Scholar
  352. [352]
    Plinkert PK, Zimmermann U, Zenner HP (1994) Active displacement of the organ of Corti following endoperilymphatic ion dysequilibrium. In: Barbara M (ed) Proc Intl Symp Ménière’s Disease 1993, Rome. Kugler, AmsterdamGoogle Scholar
  353. [353]
    Plinkert PK, Hemmert W, Zenner HP (1995) Methodenvergleich des Innenohrs — Amplitudenreduktion otoakustischer Emissionen am empfindlichsten bei subriskanter Impulsschallreizung. HNO 43(2):89–97PubMedGoogle Scholar
  354. [354]
    Plomp R (1965) Detectability thresholds for combination tones. J Acoust Soc Am 37:1110–1123PubMedGoogle Scholar
  355. [355]
    Prazma J (1981) Ototoxicity of aminoglycoside antibiotics. In: Brown RD, Daigneault EA (eds) Pharmacology of hearing. Wiley, New York, pp 153–195Google Scholar
  356. [356]
    Preyer S, Pfister M, Hemmert W (1993) Mechanische Reizung isolierter äußerer Haarzellen als Testsystem. HNO 41:471–474PubMedGoogle Scholar
  357. [357]
    Preyer S, Hemmert W, Pfister M, Zenner HP, Gummer AW (im Druck) Frequency response of mature guinea-pig outer hair cells to sterociliary displacement. Hear ResGoogle Scholar
  358. [358]
    Probst R (1990) Otoacoustic emissions: an overview. In: Pfaltz CR (ed) New aspects of cochlear mechanics and inner ear pathophysiology. Adv. Otorhinolaryngol. Karger, Basel, pp 1–91Google Scholar
  359. [359]
    Probst R, Coats AC, Martin GK, Lonsbury-Martin BL (1986) Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hear Res 21:261–275PubMedGoogle Scholar
  360. [360]
    Probst R, Lonsbury-Martin BL, Martin GK, Coats AC (1987) Otoacoustic emissions in ears with hearing loss. Am J Otolaryngol 8:73–81PubMedGoogle Scholar
  361. [361]
    Probst R, Harris FP, Hauser R (1993) Clinical monitoring using otoacoustic emissions. Br J Audiol 27:85–90PubMedGoogle Scholar
  362. [362]
    Pröschel U, Eysholdt U (1993) Evoked otoacoustic emissions in children in relation to middle ear impedance. Folia Phoniatr 45:288–294Google Scholar
  363. [363]
    Puel JL, Ladrech S, Chabert R, Pujol R, Eybalin M (1991) Electrophysiological evidence for the presence of NMDA receptors in the guinea pig cochlea. Hear Res 51:255–264PubMedGoogle Scholar
  364. [364]
    Puel JL, Gervais D’Aldin C, Pujol R, Ladrech S, Eybalin M (1992) Electrophysiological effect of a dopaminergic D2 agonist (piribedil) in the guinea pig cochlea. Workshop Inner Ear Biol. Engelberg, p 57Google Scholar
  365. [365]
    Pujol R, Lenoir M, Robertson D, Eybalin M, Johnstone BM (1985) Kainic acid selectively alters auditory dendrites connected with cochlear inner hair cells. Hear Res 18:145–152PubMedGoogle Scholar
  366. [366]
    Pujol R, Gervais D’Aldin C, Eybalin M, Tribülac F, Puel JL (1992) Effect of a dopaminergic D2 agonist (piribedil) upon ischemia-induced neurotoxicity in the guinea pig cochlea. Workshop Inner Ear Biol, Engelberg, p 58Google Scholar
  367. [367]
    Quick CA, Duvall AJ (1970) Early changes in the cochlear duct from ethacrynic acid: An electron-microscopic evaluation. Laryngoscope 80:954–965PubMedGoogle Scholar
  368. [368]
    Rajan R (1988) Effects of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. I. Depencende on electrical stimulation parameters. J Neurophysiol 60:549–568PubMedGoogle Scholar
  369. [369]
    Rajan R (1988) Effects of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts. J Neurophysiol 60:569–579PubMedGoogle Scholar
  370. [370]
    Rasmussen GL [46] The olivary peduncle and other projections of the superior olivary complex. J Comp Neurol 84:141Google Scholar
  371. [371]
    Reiter ER, Liberman MC (1991) A protective role for olivocochlear efferents in acoustic overstimulation? Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 157Google Scholar
  372. [372]
    Reuter G, Zenner HP (1990) Actice radial and transverse motile responses of outer hair cells in the organ of Corti. Hear Res 43:219–230PubMedGoogle Scholar
  373. [373]
    Reuter G, Gitter AH, Zenner HP (1990) Acetylcholine induced changes of intracellular Ca2+-levels in guinea-pig outer hair cells. In: Eisner N (ed) Brain, perception, cognition. Proc 18th Göttingen Neurobiology Conference. Thieme, Stuttgart, pp 147Google Scholar
  374. [374]
    Reuter G, Gitter AH, Thurm U, Zenner HP (1992) High frequency movements of the reticular lamina induced by outer hair cell motility. Hear Res 60:236–246PubMedGoogle Scholar
  375. [375]
    Rhode WS (1974) Measurement of vibration of the basilar membrane in the squirrel monkey. Ann Otol 83:619–625Google Scholar
  376. [376]
    Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64:158–176PubMedGoogle Scholar
  377. [377]
    Rollin H (1940) Zur Kenntnis des Labyrinthhydropses und des durch ihn bedingten Ménière. Hals Nasen Ohrenarzt 31:73–109Google Scholar
  378. [378]
    Rosen S, Bergmann M, Plester D, El-Mofty A, Satti MH (1962) Hearing loss and coronary heart disease. Arch Otorhinolaryngol 82:236–243Google Scholar
  379. [379]
    Rosowski JJ, Peake WT, White Jr. (1984) Cochlear nonlinearity inferred from two-tone distorsion products in the ear canal of the alligator lizard. Hear Res 13:141–158PubMedGoogle Scholar
  380. [380]
    Ruben RJ, Rapin I (1980) Plasticity of the developing auditory system. Ann Otol Rhinol Larnygol 89:303–311Google Scholar
  381. [381]
    Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol (Lond) 284:261–290Google Scholar
  382. [382]
    Russell IJ, Cody AR, Richardson GP (1986) The responses of inner and outer hair cells in the basal turn of the guineapig cochlea grown invitro. Hear Res 22:199–216PubMedGoogle Scholar
  383. [383]
    Russell IJ, Richardson GP (1987) The morphology and physiology of hair cells in organotypic cultures of the mouse cochlea. Hear Res 31:9–24PubMedGoogle Scholar
  384. [384]
    Russell IJ, Richardson GP, Kössl M (1989) The responses of cochlear hair cells to tonic displacements of the sensory hair bundle. Hear Res 43:55–70PubMedGoogle Scholar
  385. [385]
    Rutten WLC (1980) Evoked acoustic emissions from within normal and abnormal human ears. Hear Res 2:263–271PubMedGoogle Scholar
  386. [386]
    Rutten WLC, Buisman HP (1983) Critical behaviour of auditory oscillators near feedback phase transitions. In: de Boer E, Viergever MA (eds) Mechanisms of hearing. University Press, Delft, pp 68–75Google Scholar
  387. [387]
    Ryan AP, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253:44–46PubMedGoogle Scholar
  388. [388]
    Ryan AF, Bone RC (1982) Non-simultaneous interaction of exposure to noise and kanamycin intoxication in the chinchilla. Am J Otolaryngol 3:264–272PubMedGoogle Scholar
  389. [389]
    Ryan AF, Schwartz IR (1986) Nipecotic acid: Preferential accumulation in the cochlea by GABA uptake systems and selective retrograde transport to brainstem. Brain Res 399:399–403PubMedGoogle Scholar
  390. [390]
    Ryan AF, Simmons DM, Watts AG, Swanson LW (1991) Enkephalin mRNA production by cochlear and vestibular efferent neurons in the gerbil brainstem. Exp Brain Res 87:259–267PubMedGoogle Scholar
  391. [391]
    Rybak LP, Santiago W, Whitworth C (1986) An experimental study using sodium salicylate to reduce cochlear changes induced by furosemide. Arch Otorhinolaryngol 243:180–182PubMedGoogle Scholar
  392. [392]
    Rydmarker S, Horner KC (1990) Morphological changes of hair cell stereocilia and tectorial membrane of guinea pigs with experimentally induced hydrops. Scann Electron Microscopy Int 4:705–714Google Scholar
  393. [393]
    Saffieddine S, Eybalin M (1992) Triple immunofluorescence evidence for a coexistence of acetylcholine, enkephalins and calcitonin gene-related peptide within efferent (olivocochlear) neurons of rats and guinea pigs. Eur J Neurosci 4:981–992Google Scholar
  394. [394]
    Saito K (1983) Fine structure of the sensory epithelium of guinea pig organ of Corti: Subsurface cisternae and lamellar bodies in the outer hair cell. Cell Tissue Res 229:467–481PubMedGoogle Scholar
  395. [395]
    Saito T, Moataz R, Dulon D (1991) Cisplatin blocks depolarization induced calcium entry in isolated cochlear outer hair cells. Hear Res 56:143–147PubMedGoogle Scholar
  396. [396]
    Salt AN, Stopp PE (1979) The effect of raising the scala tympani potassium concentration on the tone induced cochlear responses of the guinea pig. Exp Brain Res 36:87–98PubMedGoogle Scholar
  397. [397]
    Santi P, Anderson CB (1987) A newly identified surface coat of cochlear hair cells. Hear Res 27:47–65PubMedGoogle Scholar
  398. [398]
    Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. Eur J Neurosci 12:1906–1916Google Scholar
  399. [399]
    Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150PubMedGoogle Scholar
  400. [400]
    Schacht J, Zenner HP (1987) Evidence that phospoinositides mediate motility in cochlear outer hair cells. Hear Res 31:155–160PubMedGoogle Scholar
  401. [401]
    Schacht J (1993) Biochemical basis of aminoglycoside ototoxicity. Otolaryngol Clin North Am 26:845–856PubMedGoogle Scholar
  402. [402]
    Schloth E (1982) Akustische Aussendungen des menschlichen Ohres (otoakustische Emissionen). Med. Dissertation, Universität MünchenGoogle Scholar
  403. [403]
    Schloth E (1983) Relation between spectral composites of spontaneous otoacoustic emissions and fine-structure of threshold in quiet. Acustica 53:250–256Google Scholar
  404. [404]
    Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous oto-acoustic emissions. Hear Res 11:285–293PubMedGoogle Scholar
  405. [405]
    Schmiedt RA (1986) Acoustic distortion in the ear canal. I. Cubic difference tones: Effects of acute noise injury. J Acoust Soc Am 79:1481–1490PubMedGoogle Scholar
  406. [406]
    Schmiedt RA (1986) Effects of asphyxia on levels of ear canal emissions in gerbils. Proc Annu Meet Assoc Res Otolaryngol, St. Petersburg B/FL, p 112Google Scholar
  407. [407]
    Schmiedt RA, Adams JC (1991) Stimulated acoustic emissions in the ear of the gerbil. Hear Res 5:295–305Google Scholar
  408. [408]
    Schmolke B, Hörmann K (1990) Vaskuläre Risikofaktoren beim Hörsturz und ihre Häufigkeit in der Normalbevölkerung — Eine retrospektive Studie. HNO 38:440–445PubMedGoogle Scholar
  409. [409]
    Schofield PR, Darlson MG, Fujita N et al. (1987) Sequence and functional expression of the GABAA receptor shows a ligand gated receptor super-family. Nature 328:221–227PubMedGoogle Scholar
  410. [410]
    Schröder M, Laskawi R, Stennert E, Kühnle H, Thiele FW (1986) Cis-Platin Ototoxizität — eine klinische Studie. Laryngol Rhinol Otol (Stuttg) 65:86–89Google Scholar
  411. [411]
    Schuetze SM, Role LW (1987) Developmental regulation of nicotinic acetylcholine receptors. Ann Rev Neurosci 10:403–457PubMedGoogle Scholar
  412. [412]
    Schuhknecht HF (1955) Presbyacusis. Laryngoscope 65:402–419Google Scholar
  413. [413]
    Schuhknecht HF, Churchill JA, Doran R (1959) The localization of acetlycholinesterase in the cochlea. Arch Otolaryngol 69:549–559Google Scholar
  414. [414]
    Schwartz IR, Ryan AF (1983) Differential labeling of sensory cell and neural populations in the organ of Corti following amino acid incubations. Hear Res 9:185–200PubMedGoogle Scholar
  415. [415]
    Schwartz IR, Ryan AF (1986) Amino acid labeling patterns in the efferent innervation of the cochlea: an electron microscope autoradiographic study. J Comp Neurol 246:500–512PubMedGoogle Scholar
  416. [416]
    Schweitzer VG (1993) Ototoxicity of chemotherapeutic agents. In: Rybak LP (ed) Otolaryngol clin North Am 26/5:759–789Google Scholar
  417. [417]
    Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea-pig using Mössbauer technique. J Acoust Soc Am 72:131–141PubMedGoogle Scholar
  418. [418]
    Sellick PM, Patuzzi R, Johnstone BM (1983) Comparison between the tuning properties of inner hair cells and basilar membrane motion. Hear Res 10:93–100PubMedGoogle Scholar
  419. [419]
    Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol (Stockh) 111:707–718Google Scholar
  420. [420]
    Shigemoto T, Ohmori H (1990) Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells. J Physiol (Lond) 420:127–148Google Scholar
  421. [421]
    Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10PubMedGoogle Scholar
  422. [422]
    Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182PubMedGoogle Scholar
  423. [423]
    Siegel JH, Kim DO, Molnar CE (1982) Effects of altering organ of Corti on cochlear distortion products 2f2-f1 and 2f1-f2. J Neurophysiol 47:303–328PubMedGoogle Scholar
  424. [424]
    Simmons FB (1979) The double-membrane break syndrome in sudden hearing loss. Laryngoscope 89:59–66PubMedGoogle Scholar
  425. [425]
    Slepecky NB, Chamberlain SC (1985) The cell coat of inner ear sensory cells as demonstrated by ruthenium red. Hear Res 17:281–288PubMedGoogle Scholar
  426. [426]
    Slepecky NB, Ulfendahl M, Flock A (1988) Shortening and elongation of isolated outer hair cells in response to application of potassium gluconate, acetylcholine and canonized ferritin. Hear Res 34:119–126PubMedGoogle Scholar
  427. [427]
    Slepecky NB, Ulfendahl M, Flock A (1988) Outer hair cell motility — calcium involvement in the pharmaco-mechanical response. In: Duifhuis H, Horst JW, Wit HP (eds) Basic issues in hearing. Academic Press, New York, pp 49–55Google Scholar
  428. [428]
    Slepecky NB, Ulfendahl M (1992) Actin-binding and microtubule-associated proteins in the organ of Corti. Hear Res 57:201–215PubMedGoogle Scholar
  429. [429]
    Slepecky NB, Ulfendahl M (1993) Evidence for calciumbinding proteins and calcium-dependent regulatory proteins in sensory cells of the organ of Corti. Hear Res 7:73–84Google Scholar
  430. [430]
    Slepecky NB, Savage JE (1994) Expression of actin isoforms in the guinea pig organ of Corti: Muscle isoforms are not detected. Hear Res 73:16–26PubMedGoogle Scholar
  431. [431]
    Sliwinska-Kowalska M, Parakkal M, Schneider ME, Fex J (1989) CGRP-like immunoreactivity in the guinea pig organ of Corti: a light and electron microscopy study. Hear Res 42:83–95PubMedGoogle Scholar
  432. [432]
    Smoorenburg GF (1972) Combination tones and their origin. J Acoust Soc Am 52:615–632Google Scholar
  433. [433]
    Smurzynski J, Leonhard G, Kim DO, Lafreniere DC, Jung MD (1990) Distortion product otoacoustic emissions in normal and impaired adult ears. Arch Otolaryngol Head Neck Surg 116:1309–1316PubMedGoogle Scholar
  434. [434]
    Sobkowicz HM, Emmerling MR (1989) Development of acetylcholinesterase-positive neuronal pathways in the cochlea of the mouse. J Neurocytol 18:209–224PubMedGoogle Scholar
  435. [435]
    Soucek S, Michaels L, Fröhlich A (1986) Evidence for hair cell degeneration as the primary lesion in hearing loss of the elderly. J Otolaryngol 15:175–183PubMedGoogle Scholar
  436. [436]
    Spoendlin HH (1960) Submikroskopische Strukturen im Cortischen Organ der Katze. Acta Otolaryngol (Stockh) 52:111–130Google Scholar
  437. [437]
    Spoendlin HH (1969) Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol (Stockh) 67:239–254Google Scholar
  438. [438]
    Spoendlin HH (1980) Akustisches Trauma. In: Berendes J, Link R, Zöllner F (Hrsg.) HNO-Heilkunde in Praxis und Klinik, Thieme, Stuttgart, pp 42-1–42-68Google Scholar
  439. [439]
    Spoendlin HH (1994) Strukturelle Organisation des Innenohres. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Praxis und Klinik. Thieme, Stuttgart, pp 32–81Google Scholar
  440. [440]
    Spoendlin HH, Gacek RR (1963) Electronmicroscopic study of the efferent and afferent innervation of the organ of Corti in the cat. Ann Otol 72:660–686Google Scholar
  441. [441]
    Spongr VP, Boettcher FA, Saunders SS, Salvi RJ (1992) Effects of noise and salicylate on hair cell loss in the chinchilla cochlea. Arch Otolaryngol Head Neck Surg 118:157–164PubMedGoogle Scholar
  442. [442]
    Steyger PS, Furness DN, Hackney CM, Richardson GP (1988) Immunocytochemistry of cytosceletal proteins in the guinea pig cochlea — a comparison of different commercially available antiboides and ultrastructure. Br J Audiol 23:143Google Scholar
  443. [443]
    Strickland AE, Burns EM, Tubs A (1985) Incidence of spontaneous otoacoustic emissions in children and infants. J Acoust Soc Am 78:931–935PubMedGoogle Scholar
  444. [444]
    Stypulkowski PH (1990) Mechanisms of salicylate ototoxicity. Hear Res 46:113–146PubMedGoogle Scholar
  445. [445]
    Suga N, Neuweiler G, Müller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 106:111–125Google Scholar
  446. [446]
    Suga F, Lindsay Jr. (1976) Histopathological observations of presbyacusis. Ann Otol 85:169–184Google Scholar
  447. [447]
    Syka J, Sykova E, Patuzzi R, Johnstone BM (1987) Potassium concentration changes in the organ of Corti during loud sound stimulation. Inner Ear Biol [Abstr] 24:56Google Scholar
  448. [448]
    Sytka J, Aitkin L (eds) (1982) Neuronal mechanisms of hearing. Plenum, New YorkGoogle Scholar
  449. [449]
    Szymko YM, Dimitri PS, Saunders JC (1992) Stiffness of hair bundels in the chick cochlea. Hear Res 59:241–249PubMedGoogle Scholar
  450. [450]
    Takada A, Schacht J (1982) Calcium antagonism and reversibility of gentamycin-induced loss of cochlear microphonics in the guinea pig. Hear Res 8:179–186PubMedGoogle Scholar
  451. [451]
    Takada A, Bledsoe S, Schacht J (1985) An energy-dependent step of gentamicin-induced loss of cochlear microphonics in the guinea pig. Hear Res 8:179–186Google Scholar
  452. [452]
    Takeda N, Kitajiri M, Girgis S, Hillyard CJ, MacIntyre I et al. (1986) The presence of a calcitonin gene-related peptide in the olivochloear bundle in rat. Expr Brain Res 61:575–578Google Scholar
  453. [453]
    Takeyama M, Kusakari J, Nishikawa N, Wada T (1992) The effect of crossed olivo-cochlear bundle stimulation on acoustic trauma. Acta Otolaryngol (Stockh) 112:205–209Google Scholar
  454. [454]
    Tanner MJA (1993) Molecular and cellular biology of the erythrocyte anion exchanger (AEI). Sem Hematol 30:34–57Google Scholar
  455. [455]
    Tasaki J, Spyropoulos CS (1959) Stria vascularis as source of endocochlear potentials. J Neurophysiol 22:149PubMedGoogle Scholar
  456. [456]
    Taudyl M, Syka J, Popelar J, Ulehlova L (1989) Comparison of carboplatin and cisplatin ototoxicity in guinea pig. Proc. 26th Workshop on Inner Ear Biology. (Abstracts), p 66Google Scholar
  457. [457]
    Thompson GC, Cortez AM, Igarashi M (1986) GABA-like immunoreactivity in the squirrel monkey organ of Corti. Brain Res 372:72–79PubMedGoogle Scholar
  458. [458]
    Tilney LG, Derosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86:244–259PubMedGoogle Scholar
  459. [459]
    Tilney LG, Saunders JC, Egelman E, DeRosier DJ (1982) Changes in the organization of actin filaments in the sterocilia of noise-damaged lizard cochlea. Hear Res 7:181–197PubMedGoogle Scholar
  460. [460]
    Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell of the cochlea. J Cell Biol 96:807–821PubMedGoogle Scholar
  461. [461]
    Tilney LG, Tilney MS (1984) Observations on how actin filaments become organized in cells. J Cell Biol 99:76–82Google Scholar
  462. [462]
    Tilney LG, Tilney MS, Cotanche DA (1988) Actin filaments, stereocilia, and hair cells of the bird cochlea. V. How the staircase pattern of stereocilia length is generated. J Cell Biol 106:355–365PubMedGoogle Scholar
  463. [463]
    Tonndorf J (1976) Endolymphatic hydrops: mechanical causes of hearing loss. Arch Otorhinolaryngol 212:293–299PubMedGoogle Scholar
  464. [464]
    Ulfendahl M (1987) Motility in auditory sensory cells. Acta Paediatr Scand 130:521–527Google Scholar
  465. [465]
    Ulfendahl M (1988) Volume and length changes in outer hair cells of the guinea pig after potassium-induced shortening. Arch Otorhinolarnygol 245:237–243Google Scholar
  466. [466]
    Usami S, Makoto I, Thompson CG (1988) Light-and electronmicroscopic study of gamma-aminobutyrid-acid-like immunoreactivity in the guinea pig organ of Corti. J Otorhinolaryngol Relat Spec 50:162–169Google Scholar
  467. [467]
    Usami S, Hozawa J, Tazawa M, Yoshihara T, Igarashi M, Thompson GC (1988) Immunocytochemical study of catecholaminergic innervation in guinea pig cochlea. Acta Otolaryngol Suppl (Stockh) 447–36–45Google Scholar
  468. [468]
    Uziel A, Bonfils P (1989) Assessment of endolymphatic cochlear hydrops by means of evoked acoustic emissions. In: Nadol JB (ed) Second Intl Symp Méniére’s disease. Kugler, Amsterdam, pp 379–383Google Scholar
  469. [469]
    Vane Jr. (1971) Inhibition of prostaglandin synthesis as a mechnaism of action for aspirin like drugs. Nature 231:232–235Google Scholar
  470. [470]
    Van Megen YJB, Klaasen ABM, Rodriques de Miranda JF, Kuijpers W (1988) Cholinergic muscarinic receptors in rat cochlea. Brain Res 474:185–188PubMedGoogle Scholar
  471. [471]
    Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7:21–43PubMedGoogle Scholar
  472. [472]
    Veuillet E, Collet L, Morgon A (1992) Differential effects of earcanal pressure and contralateral acoustic stimulation on evoked otoacoustic emissions in humans. Hear Res 61:47–55PubMedGoogle Scholar
  473. [473]
    Vosteen KH (1961) Neue Aspekte zur Biologie und Pathologie des Innenohres. Arch Otorhinolaryngol 178:1–104Google Scholar
  474. [474]
    Wackym PA, Popper P, Wada K, Wenthold RJ, Micevych PE (1992) Expression of α2, α3, α4 und β2 neuronal nicotinic receptor subunit mRNAs in the rat auditory system. Proc Symp Mol Biol Hearing and Deafness, La Jolla CA, P49Google Scholar
  475. [475] Werman R (1966) A review: criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18:745–766PubMedGoogle Scholar
  476. [476]
    Wersäll J (1981) Structural damage of the organ of Corti and the vestibular epithelia caused by aminoglycoside antibiotics in the guinea pig. In: Lerner SA, Matz GJ, Hawkins JE (eds) Aminoglycoside ototoxicity. Little Brown, Boston pp 197–214Google Scholar
  477. [477]
    Whipple MR, Drescher DG (1984) Muscarinic receptors in the cochlear nucleus and auditory nerve of the guinea pig. J Neurochem 43:192–198PubMedGoogle Scholar
  478. [478]
    Whitlon DS, Sobkowicz HM (1989) GABA-like immunore-activity in the cochlea of the developing mouse. J Neuro — cytol 18:505–518Google Scholar
  479. [479]
    Widerhold ML, Mahoney JW, Kellogg DL (1986) Acoustic overstimulation reduces 2f1-f2 cochlea emissions at all levels in the cat. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer, Berlin Heidelberg New York Tokyo, pp 322–329Google Scholar
  480. [480]
    Wier CC, Pasanen EG, McFadden D (1988) Partial dissociation of spontaneous otoacoustic emissions and distortion products during aspirin use in humans. J Acoust Soc Am 230–237Google Scholar
  481. [481]
    Williams SE, Zenner HP, Schacht J (1987) Three molecular steps of aminoglycoside ototoxicity demonstrated on outer hair cells. Hear Res 30:11–18PubMedGoogle Scholar
  482. [482]
    Williams S, Smith DE, Schacht J (1987) Characteristics of gentamycin uptake in the isolated crista ampullaris of the inner ear of the guinea pig. Biochem Pharmacol 36:89–95PubMedGoogle Scholar
  483. [483]
    Wilson JP (1980) Evidence for a cochlea origin for acoustic re-emissions, threshold fine structure and tinnitus. Hear Res 2:233–252PubMedGoogle Scholar
  484. [484]
    Wilson JP (1980) The combination tone, 2f1-f2, in psychophysics and ear canal recording. In: Psychophysical, physiological and behavioral studies in hearing. Delft Univ. Press, Delft, pp 43–52Google Scholar
  485. [485]
    Wilson JP (1984) Otoacoustic emissions and hearing mechanisms. Rev Laryngol 105:179–191Google Scholar
  486. [486]
    Wilson JP (1986) Otoacoustic emissions and tinnitus. Scand Audiol 25 [Suppl]:109–119Google Scholar
  487. [487]
    Wilson JP, Sutton GL (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus. CIBA Foundation Symposium, Pitman, London, pp 82–107Google Scholar
  488. [488]
    Wilson JP, Evans EF (1983) Effects of furosemide, flaxedil, noise and toneover-stimulation on the evoked otoacoustic emission in cat. Proc Int Union Physiol Soc 15:100Google Scholar
  489. [489]
    Wit HP, Ritsma RJ (1979) Stimulated acoustic emissions from the human ear. J Acoust Soc Am 66:911–914Google Scholar
  490. [490]
    Wit HP, Ritsma RJ (1980) Evoked acoustical responses form the human ear: Some experimental results. Hear Res 2:253–261PubMedGoogle Scholar
  491. [491]
    Wit HP, Langevoort JC, Ritsma RJ (1981) Frequency spectra of cochlear acoustic emissions (Kemp-echoes). J Acoust Soc Am 70:437–445Google Scholar
  492. [492]
    Wright CG, Schaefer SD (1982) Inner ear histopathology in patients treated with cis-platinum. Laryngoscope 92:1408–1413PubMedGoogle Scholar
  493. [493]
    Yamaguchi K, Ohmori H (1993) Suppression of the slow K+ current by cholinergic agonists in cultured chick ganglion neurones. J Physiol 464:213–228PubMedGoogle Scholar
  494. [494]
    Young AB, Fagg GE (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 11:126–133PubMedGoogle Scholar
  495. [495]
    Zenner HP (1981) Cytosceletal and muscle-like elements in cochlear hair cells. Arch Otorhinolarnygol 230:81–92Google Scholar
  496. [496]
    Zenner HP (1983) Biochemical approaches to single outer hair cells. In: Löbe LP (ed) Cochlear research. Halle Univ. Press, Halle, pp 17–21Google Scholar
  497. [497]
    Zenner HP (1986) Motile responses in outer hair cells. Hear Res 22:83–90PubMedGoogle Scholar
  498. [498]
    Zenner HP (1986) Molecular structure of hair cells. In: Altschuler RA, Hoffmann DW, Bobbin RP (eds) Neurobiology of hearing. The cochlea. Raven, New York, pp 1–21Google Scholar
  499. [499]
    Zenner HP (1986) K+-induced motility and depolarization of cochlear hair cells: direct evidence for a new pathophysiological mechanism in Ménière’s disease. Arch Otorhinolaryngol 243:108–111PubMedGoogle Scholar
  500. [500]
    Zenner HP (1987) Modern aspects of hair cell biochemistry, motility and tinnitus. In: H. Feldmann (Hrsg) Proc III International Tinnitus Seminar Münster. Harsch, Karlsruhe, pp 52–57Google Scholar
  501. [501]
    Zenner HP (1988) Motility of outer hair cells as an active, actinmediated process. Acta Otolaryngol (Stockh) 105: 39–44Google Scholar
  502. [502]
    Zenner HP (1990) Die Schallverarbeitung im Innenohr. Neue Erkenntnisse zur Zellbiologie der Haarzelle. Sitzungsberichte wissenschaftl. Gesellschaft J. W. Goethe Universität Frankfurt. Steiner, Stuttgart, S 94–124Google Scholar
  503. [503]
    Zenner HP (1994) Physiologische und biochemische Grundlagen des normalen und gestörten Gehörs. In: Naumann HH, Helms J, Herberhold C, Kastenbauer E (Hrsg) Oto-Rhino-Laryngologie in Praxis und Klinik, Bd 1. Thieme, Stuttgart, S 81–231Google Scholar
  504. [504]
    Zenner HP, Zenner B (1979) Vasopressin and isoproterenol activate adenylate cyclase in the guinea pig inner ear. Arch Otorhinolaryngol 222:275–283PubMedGoogle Scholar
  505. [505]
    Zenner HP, Gitter AH, Zimmermann U, Schmitt U, Frömter E (1985) Die isolierte lebende Haarzelle — ein neues Modell zur Untersuchung der Hörfunktion. Laryngol Rhinol Otol (Stuttg) 64:642–648Google Scholar
  506. [506]
    Zenner HP, Zimmermann U, Schmitt U (1985) Reversible contraction of isolated mammalian cochlear hair cells. Hear Res 18:127–133PubMedGoogle Scholar
  507. [507]
    Zenner HP, Zimmermann U, Gitter AH (1987) Fast motility of isolated mammalian auditory sensory cells. Biochem Biophys Res Comm 49:304–308Google Scholar
  508. [508]
    Zenner HP, Schacht J (1986) Hörverlust durch Aminoglykosid Antibiotika: Angriff am Membranbaustein PIP2 in äußeren Haarzellen als Wirkungsmechanismus. HNO 34:417–423PubMedGoogle Scholar
  509. [509]
    Zenner HP, Arnold W, Gitter AH (1988) Outer hair cells as fast and slow cochlear amplifiers with a bidirectional transduction cycle. Acta Otolaryngol (Stockh) 105:457–462Google Scholar
  510. [510]
    Zenner HP, Zimmermann R, Gitter AH (1988) Active movements of the cuticular plate induce sensory hair motion in mammalian outer hair cells. Hear Res 34:233–240PubMedGoogle Scholar
  511. [511]
    Zenner HP, Reuter G, Plinkert PK, Zimmermann U, Gitter AH (1989) Outer hair cells possess acetylcholine receptors and produce motile responses in the organ of Corti. In: Wilson UP, Kemp DT (eds) Cochlear mechanics. Plenum Press, pp 93–98Google Scholar
  512. [512]
    Zenner HP, Gitter AH (1989) Transduktions-und Motorstörungen cochleärer Haarzellen bei M. Ménière und Aminoglykosidschwerhörigkeit. Laryngol Rhinol Otol (Stuttg) 68:552–556Google Scholar
  513. [513]
    Zenner HP, Zimmermann U, Gitter AH (1990) Cell potential and motility of isolated mammalian vestibular sensory cells. Hear Res 50:289–294PubMedGoogle Scholar
  514. [514]
    Zenner HP, Ernst A (1993) Cochlear-motor, transduction and signal-transfer tinnitus: models for three types of cochlear tinnitus. Eur Arch Otorhinolaryngol 249:447–454PubMedGoogle Scholar
  515. [515]
    Zenner HP, Keiner S, Zimmermann U (1994) Specific glutathione-SH inhibition of toxis effects of metabolized gentamicin on isolated guinea pig hair cells. Eur Arch Otorhinolaryngol 251:84–90PubMedGoogle Scholar
  516. [516]
    Zenner HP, Reuter G, Zimmermann U, Gitter AH, Femin C, LePage El (1994) Transitory endolymphatic leakage induced hearing loss and tinnitus in Ménière’s syndrome: effects of endolymph on hair cell functions in the guinea pig. Eur Arch Otorhinolaryngol 251:143–153PubMedGoogle Scholar
  517. [517]
    Zimmermann R (1990) Untersuchungen zur Beweglichkeit lebender äußerer Haarzellen in der Kurzzeitkultur. Med. Dissertation, Universität TübingenGoogle Scholar
  518. [518]
    Zorowka PG, Schmitt HJ, Gutjahr P (1993) Evoked otoacoustic emissions and pure tone threshold audiometry in patients receiving cisplatinum therapy. Int J Pediatr Otorhinolaryngol 25:73–80PubMedGoogle Scholar
  519. [519]
    Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523PubMedGoogle Scholar
  520. [520]
    Zurek PM, Clark WW, Kim DO (1982) The behaviour of acoustic distortion products in the ear canals of chinchilla with normal or damaged ears. J Acoust Soc Am 72:774–780PubMedGoogle Scholar
  521. [521]
    Zwicker E (1983) Delayed evoked otoacoustic emissions and their suppression by Gaussian-shaped pressure impulses Hear Res 11:359–371PubMedGoogle Scholar
  522. [522]
    Zwicker E (1983) On peripheral processing in human hearing. In: Klinke R, Hartmann R (Hrsg) Hearing — Physiol, bases and psychophysics. Springer, Berlin Heidelberg New York Tokyo pp 104–110Google Scholar
  523. [523]
    Zwicker E (1985) Das Innenohr als aktives schallverarbeitendes und schallaussendendes System. Fortschr Akust DAGA 85:29–44Google Scholar
  524. [524]
    Zwicker E (1987) The uncorrelation between tinnitus and SOAE. In: Feldmann H (Hrsg) Proc III International Tinnitus Seminar Münster. Harsch, Karlsruhe pp 75–81Google Scholar
  525. [525]
    Zwicker E (1990) On the frequency separation of simultaneously evoked otoacoustic emissions. J Acoust Soc Am 88:1639–1641PubMedGoogle Scholar
  526. [526]
    Zwicker E (1990) On the influence of probe impedance on evoked otoacoustic emissions. Hear Res 47:185–190PubMedGoogle Scholar
  527. [527]
    Zwicker E, Harris FP (1990) Psychoacoustical and ear canal cancellation of 2f1-f2 distorsion product. J Acoust Soc Am 87:2583–2591PubMedGoogle Scholar
  528. [528]
    Zwicker E, Manley G (1981) Acoustical responses and sup-pressionperiod patterns in guinea pigs. Hear Res 4:43–52PubMedGoogle Scholar
  529. [529]
    Zwicker E, Schloth E (1984) Interrelation of different otoacoustic emissions. J Acoust Soc Am 75:1148–1154PubMedGoogle Scholar
  530. [530]
    Zwislocki J (1962) Analysis of the middle ear function. Part I: Input impedance. J Acoust Soc Am 34:1514–1523Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. K. Plinkert
    • 1
  1. 1.Universitäts-HNO-Klinik TübingenTübingenDeutschland

Personalised recommendations