Skip to main content

Molecular Mechanisms of Membrane Fusion

  • Conference paper
Book cover Trafficking of Intracellular Membranes:

Part of the book series: NATO ASI Series ((ASIH,volume 91))

Abstract

A crucial step in the trafficking of intracellular membranes is membrane fusion. Endocytotic vesicles or phagosomes form via fusion of the apposed exoplasmic leaflets of the invaginated plasma membrane. The endocytotic vesicles are then thought to fuse with endosomes. Later in the endocytotic pathway, endosomes and phagosomes eventually fuse with lysosomes, in a process involving the interaction and fusion of the cytoplasmic leaflets of their membranes. Following endocytosis, receptor-containing vesicles undergo a “fission” or “budding” process to facilitate the transport of receptors back to the plasma membrane. This budding involves the interaction and fusion of the membrane leaflets facing the lumen of the flaccid vesicle. Likewise, in the Golgi apparatus, transport vesicles are thought to bud off from one compartment and fuse with the next one along the cis, medial and trans regions of the organelle.

This chapter is dedicated, with gratitude, to my father, Prof. Orhan Düzgüneş

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabas MH, Cohen FS, Finkelstein A (1984) Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis. J Cell Biol 98: 1063–1071

    Article  PubMed  CAS  Google Scholar 

  • Alvarez de Toledo G, Fernandez-Chacon R, Fernández JM (1993) release of secretory products during transient vesicle fusion. Nature 363: 554–557

    Article  PubMed  CAS  Google Scholar 

  • Baker PF (1988) Exocytosis in electropermeabilized cells: Clues to mechanism and physiological control. In: Membrane Fusion in Fertilization, Cellular Transport and Viral Infection (Düzgünes N, Bronner F, eds), pp 115–138, Academic Press San Diego

    Google Scholar 

  • Baker PF, Knight DE, Whitaker MJ (1980) Calcium and the control of exocytosis. In: Calcium Binding Proteins: Structure and Function (Siegel FL, Carafoli E, Kretsinger RH, MacLennan DH, Wasserman RH, eds), pp 47–55, Elsevier/North Holland New York

    Google Scholar 

  • Baumert M, Maycox PR, Navone F, De Camilli P, Jahn R (1989) Synaptobrevin: an integral membrane protein of 18 000 daltons present in small synaptic vesicle of rat brain. EMBO J 8: 379–384

    PubMed  CAS  Google Scholar 

  • Bearer EL, Düzgünes N, Friend DS, Papahadjopoulos D (1982) Fusion of phospholipid vesicles arrested by quick freezing. The question of lipidic particles as intermediates in membrane fusion. Biochim Biophys Acta 693: 93–98

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: A synaptic protein implicated in docking of synaptic vesicels at presynaptic active zones. Science 257: 255–259

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK, Scheller RH (1993) The molecular machinery for secretion is conserved from yeast to neuron. Proc Natl Acad Sci USA 90: 2559–2563

    Article  PubMed  CAS  Google Scholar 

  • Bentz J, Ellens H, Alford D (1990) An architecture for the fusion site of influenza hemagglutinin. FEBS Lett. 276: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361: 315–325

    Article  PubMed  CAS  Google Scholar 

  • Blackwood RA, Ernst JD (1990) Characterization of Ca2+-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem J 266: 195–200

    PubMed  CAS  Google Scholar 

  • Bondeson J, Sundler R (1985) Lysine peptides induce lipid intermixing but not fusion of phosphatidic acid-containing vesicles. FEBS Lett 190: 283–287

    Article  CAS  Google Scholar 

  • Breckenridge LJ, Almers W (1987) Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328: 814–817

    Article  PubMed  CAS  Google Scholar 

  • Brose N, Petrenko AG, Südhof TC, Jahn R (1992) Synaptotagmin: A calcium sensor on the synaptic vesicle surface. Science 256: 1021–1025

    Article  PubMed  CAS  Google Scholar 

  • Burger KNJ, Nieva JL, Alonso A, Verkleij AJ (1991) Phospholipase C activity-induced fusion of purel lipid model membranes. A freeze-fracture study. Biochim Biophys Acta 1068: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Chandler DE (1988) Exocytosis and endocytosis: Membrane fusion events captured in rapidly frozen cells. In: Membrane Fusion in Fertilization, Cellular Transport and Viral Infection (Düzgünes N, Bronner F, eds), pp 169–202, Academic Press San Diego

    Google Scholar 

  • Chernomordik LV, Kozlov MM, Melikyan GB, Abidor IG, Markin VS, Chizmadzhev YA (1985) The shape of lipid molecules and monolayer membrane fusion. Biochim Biophys Acta 812: 643–655

    Article  CAS  Google Scholar 

  • Chernomordik LV, Melikyan GB, Chizmadzhev YA (1987) Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta 906: 309–352

    PubMed  CAS  Google Scholar 

  • Chernomordik LV, Vogel SS, Sokoloff A, Onaran HO, Leikina EA, Zimmerberg J (1993) Lysolipids reversibly inhibit Ca2+-, GTP- and pH-dependent fusion of biological membranes. FEBS Lett 318: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Allan D (1985) Loss of phosphatidylinositol and gain in phosphatidate in neutrophhils stimulated with fmet-leu-phe. In: Inositol and Phosphoinositides (Bleasdale JE, Eichberg J, Hauser G, eds), pp 161–177, Humana Press Clifton New Jersey

    Chapter  Google Scholar 

  • Creutz CE (1981) Cis-unsaturated fatty acids induce the fusion of chromaffin granules aggregated by synexin. J Cell Biol 91: 247–256

    Article  PubMed  CAS  Google Scholar 

  • Creutz CE (1992) The annexins and exocytosis. Science 258: 924–931

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, Hope MJ (1978) Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature 271: 672–674

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, Verkleij AJ (1979) Modulation of membrane structure by Ca2+ and dibucaine as detected by 31P NMR. Biochim Biophys Acta 552: 546–551

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, Tilcock CP, Hope MJ (1991) Lipid polymorphism. In: Membrane Fusion (Wilschut J, Hoekstra D, eds), pp 35-64, Marcel Dekker New York

    Google Scholar 

  • Dahl G, Ekerdt R, Gratzl M (1979) Models for exocytotic membrane fusion. Symp Soc Exp Biol 33: 349–368

    PubMed  CAS  Google Scholar 

  • deKruijff B, de Gier J, van Hoogevest P, van der Steen N, Taraschi TF, de Kroon T (1991) Effects of an integral membrane glycoprotein on phospholipid vesicle fusion. In: Membrane Fusion (Wilschut J, Hoekstra D, eds), pp 209–229, Marcel Dekker New York

    Google Scholar 

  • Doms RW, Helenius AH, White JM (1985) Membrane fusion activity of the influenza virus hemagglutinin: the low pH-induced conformational change. J Biol Chem 260: 2973–2981

    PubMed  CAS  Google Scholar 

  • Düzgünes N (1985) Membrane fusion. In: Subcellular Biochemistry, Vol. 11, (Roodyn DB, ed), pp 195–286, Plenum New York

    Google Scholar 

  • Düzgünes N (ed) (1993a) Membrane Fusion Techniques, Methods in Enzymology, Vol. 220. Academic Press San Diego

    Google Scholar 

  • Düzgüneş N (ed) (1993b) Membrane Fusion Techniques, Methods in Enzymology, Vol. 221. Academic Press San Diego

    Google Scholar 

  • Düzgüneş N, Papahadjopoulos D (1983) Ionotropic effects on phospholipid membranes: Calcium-magnesium specificity in binding, fluidity, and fusion. In: Membrane Fluidity in Biology, Vol. 2, (Aloia RC, ed), pp 187–216, Academic Press New York

    Google Scholar 

  • Düzgüneş N, Gambale F (1988) Membrane action of synthetic peptides from influenza virus hemagglutinin and its mutants. FEBS Lett 227: 110–114

    Article  PubMed  Google Scholar 

  • Düzgüneş N, Shavnin SA (1992) Membrane destabilization by N-terminal peptides of viral envelope proteins. J Memb Biol 128: 71–80

    Article  Google Scholar 

  • Düzgüneş N, Nir S (1994) Liposomes as tools for elucidating the mechanisms of membrane fusion. In: Liposomes as Tools in Basic Research and Industry (Philippot JR, Schuber F, eds), CRC Press Boca Raton (in press)

    Google Scholar 

  • Düzgüneş N, Hong K, Papahadjopoulos D (1980) Membrane fusion: The involvement of phospholipids, proteins and calcium binding. In: Calcium Binding Proteins: Structure and Function (Siegel FL, Carafoli E, Kretsinger RH, MacLennan DH, Wasserman RH, eds), pp 17–22, Elsevier/North Holland New York

    Google Scholar 

  • Düzgüneş N, Wilschut J, Fraley R, Papahadjopoulos D (1981) Studies on the mechanism of membrane fusion: role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles. Biochim Biophys Acta 642: 182–195

    Article  PubMed  Google Scholar 

  • Düzgüneş N, Paiement J, Freeman KB, Lopez NG, Wilschut J, Papahadjopoulos D (1984a) Modulation of membrane fusion by ionotropic and thermotropic phase transitions. Biochemistry 23: 3486–3494

    Article  PubMed  Google Scholar 

  • Düzgüneş N, Hoekstra D, Hong K, Papahadjopoulos D (1984b) Lectins facilitate calcium-induced fusion of phospholipid vesicles containing glycosphingolipids. FEBS Lett 173: 80–84

    Article  PubMed  Google Scholar 

  • Düzgüneş N, Wilschut J, Papahadjopoulos D (1985) Control of membrane fusion by divalent cations, phospholipid head-groups and proteins. In: Physical Methods on Biological Membranes and their Model Systems (Conti F, Blumberg WE, DeGier J, Pocchiari F, eds), pp 193–218, Plenum Press New York

    Google Scholar 

  • Düzgüneş N, Hong K, Baldwin PA, Bentz J, Nir S, Papahadjopoulos D (1987a) Fusion of phospholipid vesicles induced by divalent cations and protons. Modulation by phase transitions, free fatty acids, monovalent cations, and polyamines. In: Cell Fusion (Sowers AE, ed), pp 241–267, Plenum Press New York

    Google Scholar 

  • Düzgüneş N, Allen TM, Fedor J, Papahadjopoulos, D (1987b) Lipid mixing during membrane aggregation and fusion. Why fusion assays disagree, Biochemistry 26: 8435–8442

    Article  PubMed  Google Scholar 

  • Düzgüneş N, Goldstein JA, Friend DS, Felgner PL (1989) Fusion of liposomes containing a novel cationic lipid, N-[1-(2,3-(dioleyloxy)propyl]-N, N, N-trimethylammonium: Induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles. Biochemistry 28: 9179–9184

    Article  PubMed  Google Scholar 

  • Ekerdt R, Papahadjopoulos D (1982) Intermembrane contact affects calcium binding to phospholipid vesicles, Proc Natl Acad Sci USA 79: 2273–2277

    Article  PubMed  CAS  Google Scholar 

  • Ellens H, Bentz J, Szoka FC (1985) H+- and Ca2+ -induced fusion and destabilization of liposomes. Biochemistry 24: 3099–3106

    Article  PubMed  CAS  Google Scholar 

  • Ellens H, Siegel DP, Alford D, Yeagle PL, Boni L, Lis LJ, Quinn PJ, Bentz, J (1989) Membrane fusion and inverted phases. Biochemistry 28: 3692–3703

    Article  PubMed  CAS  Google Scholar 

  • Feigenson GW (1986) On the nature of calcium ion binding between phosphatidylserine lamellae. Biochemistry 25: 5819–5825

    Article  PubMed  CAS  Google Scholar 

  • Fraley R, Wilschut J, Düzgüneş N, Smith C, Papahadjopoulos D (1980) Studies on the mechanism of membrane fusion: the role of phosphate in promoting calcium-induced fusion of phospholipid vesicles. Biochemistry 19: 6021–6029

    Article  PubMed  CAS  Google Scholar 

  • Francis JW, Balazovich KJ, Smolen JE, Margolis DI, Boxer LA (1992) Human neutrophil annexin I promotes granule aggregation and modulates Ca2+-dependent membrane fusion. J Clin Invest 90: 537–544

    Article  PubMed  CAS  Google Scholar 

  • Gething MJ, Doms RW, York D, White J (1986) Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol 102: 11–23

    Article  PubMed  CAS  Google Scholar 

  • Harter C, James P, Bächi T, Semenza G, Brunner J (1989) Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the “fusion peptide.” J Biol Chem 264: 6459–6464

    PubMed  CAS  Google Scholar 

  • Hauser H, Pascher I, Pearson RH, Sundell S (1981) Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidyl-choline. Biochim Biophys Acta 650: 21–51

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Heinemann C, Neher E, Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371: 513–515

    Article  PubMed  CAS  Google Scholar 

  • Helm CA, Israelachvili JN (1993) Forces between phospholipid bilayers and relationship to membrane fusion. In: Membrane Fusion Techniques, Methods in Enzymology, Vol 220, (Düzgünes N, ed), pp 130–143, Academic Press San Diego

    Google Scholar 

  • Helm CA, Israelachvili JN, McGuiggan PM (1989) Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246: 919–922

    Article  PubMed  CAS  Google Scholar 

  • Helm CA, Israelachvili JN, McGuiggan PM (1992) Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 31: 1794–1805

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D (1982) Role of lipid phase separations and membrane dehydration in phospholipid vesicle fusion. Biochemistry 21: 2833–2840

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Düzgüneş N (1986) Ricinus communis agglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles. Effect of carbohydrate headgroup size, calcium ions and spermine. Biochemistry 25: 1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Düzgüneş N (1989) Lectin-carbohydrate interactions in model and biological membrane systems. In: Subcellular Biochemistry, Vol 14 (Harris JR, Etamadi AH, eds), pp 229–278, Plenum New York

    Google Scholar 

  • Hoekstra D, Düzgüneş N, Wilschut J (1985) Agglutination and fusion of globoside GL-4 containing phospholipid vesicles mediated by lectins and Ca2+. Biochemistry 24: 565–572

    Article  PubMed  CAS  Google Scholar 

  • Höhne-Zell B, Gratzl M (1995) Molecular analysis of exocytosis in neurons and endocrine cells. In: Trafficking of Intracellular Membranes: From Molecular Sorting to Membrane Fusion (Pedroso de Lima MC, Düzgünes N, Hoekstra D, eds), Springer Verlag Berlin (in press)

    Google Scholar 

  • Hong K, Düzgüneş N, Papahadjopoulos D (1981) Role of synexin in membrane fusion. Enhancement of calcium-dependent fusion of phospholipid vesicles. J Biol Chem 256: 3641–3644

    PubMed  CAS  Google Scholar 

  • Hong K, Düzgüneş N, Ekerdt R, Papahadjopoulos D (1982) Synexin facilitates fusion of specific phospholipid vesicles at divalent cation concentrations found intracellularly. Proc Natl Acad Sci USA 70: 4642–4644

    Article  Google Scholar 

  • Hope MJ, Walker DC, Cullis, PR (1983) Calcium and pH-induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: A freeze-fracture study. Biochem Biophys Res Commun 110: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Hui SW, Stewart TP, Boni LT, Yeagle PL (1981) Membrane fusion through point defects in bilayers. Science 212: 921–923

    Article  PubMed  CAS  Google Scholar 

  • Hui S, Mr S, Stewart TP, Boni LT, Huang SK (1988) Kinetic measurements of fusion of phosphatidylserine-containing vesicles by electron microscopy and fluorometry. Biochim. Biophys. Acta 941: 130–140

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili JN, McGuiggan PM (1988) Forces between surfaces in liquids. Science 241: 795–800

    Article  PubMed  CAS  Google Scholar 

  • Jendrasiak GL, Hasty JH (1974) The hydration of phospholipids. Biochim Biophys Acta 337: 79–91

    PubMed  CAS  Google Scholar 

  • Johnstone SA, Hubaishy I, Waisman DM (1993) Regulatiosn of annexin II-dependent aggregation of phospholipid vesicles. Biochem J 294: 801-807

    PubMed  CAS  Google Scholar 

  • Kelly RB (1993) Much ado about docking. Curr Biol 3: 474–476

    Article  PubMed  CAS  Google Scholar 

  • Kemble GW, Danieli T, White JM (1994) Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76: 383–391

    Article  PubMed  CAS  Google Scholar 

  • Klee CB (1988) Ca2+-depenent phospholipid- (and membrane-) binding proteins. Biochemistry 27: 6645–6652

    Article  PubMed  CAS  Google Scholar 

  • Leckband DE, Helm CA, Israelachvili JN (1993) Role of calcium in the adhesion and fusion of bilayers. Biochemistry 32: 1127–1140

    Article  PubMed  CAS  Google Scholar 

  • Lifson JD, Feinberg MB, Reyes GR, Rabin L, Banapour B, Chakrabarti S, Moss B, Wong-Staal F, Steimer KS, Engleman EG (1986) Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256: 677–679

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Kozlov MM, Borovjagin VL (1984) On the theory of membrane fusion. The stalk mechanism. Gen Physiol Biophys 5: 361–377

    Google Scholar 

  • McIntosh TJ, Magid AD, Simon SA (1987) Steric repulsion between phosphatidylcholine bilayers. Biochemistry 26: 7325–7332

    Article  PubMed  CAS  Google Scholar 

  • McIver DJL (1979) Control of membrane fusion by interfacial water: a model for the actions of divalent cations. Physiol Chem Phys 11: 289–302

    CAS  Google Scholar 

  • Meers P, Hong K, Bentz J, Papahadjopoulos D (1986) Spermine as a modulator of membrane fusion: interaction with acidic phospholipids. Biochemistry 25: 3109–3118

    Article  PubMed  CAS  Google Scholar 

  • Meers P, Ernst JD, Düzgüneş N, Hong K, Fedor J, Goldstein EM, Papahadjopoulos D (1987) Synexin-like proteins from human polymorphonuclear leukocytes. Identification and characterization of granule-aggregating and membrane-fusing activities. J Biol Chem 262: 7850–7858.

    PubMed  CAS  Google Scholar 

  • Meers P, Bentz J, Alford D, Nir S, Papahadjopoulos D, Hong K (1988) Synexin enhances the aggregation rate but not the fusion rate of liposomes. Biochemistry 27: 4430–4439

    Article  PubMed  CAS  Google Scholar 

  • Meers P, Mealy T, Pavlotsky N, Tauber AI (1992) Annexin I-mediated vesicular aggregation: Mechanism and role in human neutrophils. Biochemistry 31: 6372–6382

    Article  PubMed  CAS  Google Scholar 

  • Meers P, Mealy T, Tauber AI (1993) Annexin I interactions with human neutrophil specific granules: fusogenicity and coaggregation with plasma membrane vesicles. Biochim Biophys Acta 1147: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Miller DC, Dahl GP (1982) Early events in calcium-induced liposome fusion. Biochim Biophys Acta 689: 165–169

    Article  PubMed  CAS  Google Scholar 

  • Monck JR, Fernandez JM (1992) The exocytotic fusion pore. J Cell Biol 119: 1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Nanavati C, Markin VS, Oberhauser A, Fernandez JM (1992) The exocytotic fusion pore as a protein-supported lipidic structure. Biophys J 63: 1118–1132

    Article  PubMed  CAS  Google Scholar 

  • Neher E (1974) Asymetric membranes resulting from the fusion of two black lipid bilayers. Biochim Biophys Acta 373: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Nieva JL, Goni FM, Alonso A (1989) Liposome fusion catalytically induced by phospholipase C. Biochemistry 28: 7364–7367

    Article  PubMed  CAS  Google Scholar 

  • Nir S (1984) A model for cation adsorption in closed systems: Application to calcium binding to phospholipid vesicles. J Coll Interface Sci 102: 313–321

    Article  CAS  Google Scholar 

  • Nir S, Bentz J, Düzgüneş N (1981) Two modes of reversible vesicle aggregation: particle size and the DLVO theory. J Coll. Interface Sci 84: 266–269

    Article  CAS  Google Scholar 

  • Nir S, Wilschut J, Bentz J (1982) The rate of fusion of phospholipid vesicles and the role of bilayer curvature. Biochim Biophys Acta 688: 275–278

    Article  PubMed  CAS  Google Scholar 

  • Nir S, Bentz J, Wilschut J, Düzgüneş N (1983) Aggregation and fusion of phospholipid vesicles. Prog Surface Sci 13: 1–124

    Article  CAS  Google Scholar 

  • Ohki S (1984) Effects of divalent cations, temperature, osmotic pressure gradient and vesicle curvature on phosphatidylserine vesicle fusion. J Memb Biol 77: 265–275

    Article  CAS  Google Scholar 

  • Ohki, S. (1988) Surface tension, hydration eenergy and membrane fusion. In: Molecular Mechanisms of Membrane Fusion (Ohki S, Doyle D, Flanagan T, Hui SW, Mayhew E, eds), pp 123–138, Plenum Press New York

    Google Scholar 

  • Ohki S, Düzgüneş N (1979) Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes. Biochim Biophys Acta 552: 438–449

    Article  PubMed  CAS  Google Scholar 

  • Ohki S, Ohshima H (1984) Divalent cation-induced surface tension increase in acidic phospholipid membranes. Ion binding and membrane fusion, Biochim Biophys Acta 776: 177–182

    Article  CAS  Google Scholar 

  • Oshry L, Meers P, Mealy T, Tauber AI (1991) Annexin-mediated membrane fusion of human neutrophil plasma membranes and phospholipid vesicles. Biochim Biophys Acta 1006: 239–244

    Google Scholar 

  • Papahadjopoulos D, Vail WJ, Newton C, Nir S, Jacobson K, Poste G, Lazo R (1977) Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim Biophys Acta 465: 579–598

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Nir S, Düzgünes N (1990) Molecular mechanisms of calcium-induced membrane fusion. J Bioenerget Biomembr 22: 157–179

    Article  CAS  Google Scholar 

  • Park J-B, Lee TH, Kim H (1992) Fusion of phospholipid vesicles induced by phospholipase D in the presence of calcium ion. Biochem Int 27: 417–422

    PubMed  CAS  Google Scholar 

  • Parsegian VA, Rand RP (1991) Forces governing lipid interaction and rearrangement. In: Membrane Fusion (Wilschut J, Hoekstra D, eds), pp 65–85, Marcel Dekker New York

    Google Scholar 

  • Pedroso de Lima MC, Ramalho-Santos J, Düzgünes N, Flasher D, Nir S (1995) Entry of enveloped viruses into host cells: Fusion activity of the influenza hemagglutinin. In: Trafficking of Intracellular Membranes: From Molecular Sorting to Membrane Fusion (Pedroso de Lima MC, Düzgünes N, Hoekstra D, eds), Springer Verlag Berlin (in press)

    Google Scholar 

  • Plattner H (1989) Regulation of membrane fusion during exocytosis. Int Rev Cytol 119: 197–286

    Article  PubMed  CAS  Google Scholar 

  • Pollard HB, Rojas E, Pastor RW, Rojas EM, Guy HR, Burns AL (1991) Synexin: Molecular mechanism of calcium-dependent membrane fusion and voltage dependent calcium channel activity. Ann NY Acad Sci. 635: 328–351

    Article  PubMed  CAS  Google Scholar 

  • Portis A, Newton C, Pangborn W, Papahadjopoulos D (1979) Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+ and inhibition by spectrin. Biochemistry 18: 780–790

    Article  PubMed  CAS  Google Scholar 

  • Prestegard JH, O’Brien MP (1987) Membrane and vesicle fusion. Ann Rev Phys Chem 38: 383–411

    Article  CAS  Google Scholar 

  • Rafalski M, Ortiz A, Rockwell A, Van Ginkel LC, Lear JD, DeGrado WF, Wilschut J (1991) Membrane fusion activity of the influenza virus hemagglutinin: Interaction of HA2 N-terminal peptides with phospho-lipid vesicles. Biochemistry 30: 10211–10220

    Article  PubMed  CAS  Google Scholar 

  • Reiss-Husson F (1967) Structure des phases liquid-crystallines de différents phospholipides, monoglycerides, sphingolipides, anhydrides ou en présence d’eau. J Mol Biol 25: 363–382

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg J, Düzgünes N, Kayalar C (1983) Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components. Biochim Biophys Acta 735: 173–180

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355, 409–415

    Article  PubMed  CAS  Google Scholar 

  • Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Lareto P, DasGupta BR, Montecucco C (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359: 832–835

    Article  PubMed  CAS  Google Scholar 

  • Schuber F, Hong K, Düzgüneş N, Papahadjopoulos D (1983) Polyamines as modulators of membrane fusion: Aggregation and fusion of liposomes. Biochemistry 22: 6134–6140

    Article  PubMed  CAS  Google Scholar 

  • Shavnin SA, Pedroso de Lima MC, Fedor J, Wood P, Bentz J, Düzgünes N (1988) Cholesterol affects divalent cation-induced fusion and isothermal phase transitions of phospholipid membranes. Biochim. Biophys. Acta 946: 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Siegel DP (1986) Inverted micellar intermediates and the transitions between lamellar, cubic and inverted hexagonal lipid phases. EL Implications for membrane-membrane interactions and membrane fusion. Biophys J 49: 1171–1183

    Article  PubMed  CAS  Google Scholar 

  • Siegel DP (1993) Energetics of intermediates in membrane fusion: Comparison of stalk and inverted micellar intermediate mechanisms. Biophys J 65: 2124–2140

    Article  PubMed  CAS  Google Scholar 

  • Siegel DP, Burns JL, Chestnut MH, Talmon Y. (1989) Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Biophys J 56: 161–169

    Article  PubMed  CAS  Google Scholar 

  • Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson AI, Wiley DC (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci USA 79: 968–972

    Article  PubMed  CAS  Google Scholar 

  • Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318–324

    Article  PubMed  Google Scholar 

  • Spruce AE, Iwata A, White JM, Almers W (1989) Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342: 555–558

    Article  PubMed  CAS  Google Scholar 

  • Stamatatos L, Leventis R, Zuckermann MJ, Silvius JR (1988) Interaction of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry 27: 3917–3925

    Article  PubMed  CAS  Google Scholar 

  • Stegmann T (1993) Influenza hemagglutinin-mediated membrane fusion does not involve inverted phase lipid intermediates. J Biol Chem 268: 1716–1722

    PubMed  CAS  Google Scholar 

  • Stegmann (1994) Anchors aweigh. Curr Biol 4: 551–554

    Article  PubMed  CAS  Google Scholar 

  • Stewart TP, Hui SW, Portis AR, Papahadjopoulos D (1979) Complex phase mixing of phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles. Biochim Biophys Acta 556: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC, De Camilli P, Niemann H, Jahn R (1993) Membrane fusion machinery: Insights from synaptic proteins. Cell 75: 1–4

    PubMed  Google Scholar 

  • Sundler R, Papahadjopoulos D (1981) Control of membrane fusion by phospholipid head groups. I. Phosphatidate/phosphatidylinositol specificity. Biochim Biophys Acta 649: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Sundler R, Wijkander J (1983) Protein-mediated intermembrane contact specifically enhances Ca2+-induced fusion of phosphatidate-containing membranes Biochim. Biophys. Acta 730: 391–394

    Article  CAS  Google Scholar 

  • Sundler R, Düzgüneş N, Papahadjopoulos D (1981) Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol Biochim Biophys Acta 649: 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Tse FW, Iwata A, Aimers W (1993) Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion. J Cell Biol 121: 543–552

    Article  PubMed  CAS  Google Scholar 

  • Tsurudome M, Glück R, Graf R, Falchetto R, Schaller U, Brunner J (1992) Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. J Biol Chem 267: 20225–20232

    PubMed  CAS  Google Scholar 

  • Verkleij AJ, Mombers C, Gerritsen WJ, Leunissen-Bijvelt L, Cullis PR (1979) Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze-fracturing. Biochim Biophys Acta 555: 358–361

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, van Echteld CJA, Gerritsen WJ, Cullis PR, de Kruijff, B (1980) The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions. Biochim. Biophys. Acta 600: 620–624

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, Leunissen-Bijvelt J, de Kruijff B, Hope M, Cullis PR (1984) Non-bilayer structures in membrane fusion. In: Cell Fusion, Ciba Foundation Symposium, Vol. 103, pp 45–59 Pitman Books London

    Google Scholar 

  • Wakelam MJO (1988) Myoblast fusion-A mechanistic analysis. In: Membrane Fusion in Fertilization, Cellular Transport and Viral Infection (Düzgünes N, Bronner F, eds), pp 87–112, Academic Press San Diego

    Google Scholar 

  • Wang W, Creutz CE (1992) Regulation of chromaffin granule aggregating activity of annexin I by phosphorylation. Biochemistry 31: 9934–9939

    Article  PubMed  CAS  Google Scholar 

  • Weber T, Paesold G, Galli C, Mischler R, Semenza G, Brunner J (1994) Evidence for H+-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. J Biol Chem 269: 18353–18358

    PubMed  CAS  Google Scholar 

  • White JM (1992) Membrane fusion. Science 258: 917–924

    Article  PubMed  CAS  Google Scholar 

  • White J, Matlin K, Helenius A (1981) Cell fusion by Semliki Forest, influenza and vesicular stomatitis viruses, J Cell Biol 89: 674–679

    Article  PubMed  CAS  Google Scholar 

  • Wilschut J (1991) Membrane fusion in lipid vesicle systems. An overview. In: (Wilschut J, Hoekstra, eds), pp 89–126, Marcel Dekker New York

    Google Scholar 

  • Wilschut J, Düzgüneş N, Fraley, R, Papahadjopoulos D (1980) Studies on the mechanism of membrane fusion: Kinetics of Ca2+-induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry 19: 6011–6021

    Article  PubMed  CAS  Google Scholar 

  • Wilschut J, Düzgüneş N, Papahadjopoulos D (1981) Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature. Biochemistry 20: 3126–3133

    Article  PubMed  CAS  Google Scholar 

  • Wilschut J, Düzgüneş N, Hoekstra D, Papahadjopoulos D (1985) Modulation of membrane fusion by membrane fluidity: Temperature dependence of divalent cation-induced fusion of phosphatidylserine vesicles. Biochemistry 24: 8–12

    Article  PubMed  CAS  Google Scholar 

  • Wilson, DW, Whiteheart SW, Orci L, Rothman JE (1991) Intracellular membrane fusion. Trends Biochem Sci 16: 334–337

    Article  PubMed  CAS  Google Scholar 

  • Yanagimachi R (1988) Sperm-egg fusion. In: Membrane Fusion in Fertilization, Cellular Transport and Viral Infection (Düzgünes N, Bronner F, eds), pp 3–43, Academic Press San Diego

    Google Scholar 

  • Zaks WJ, Creutz CE (1988) membrane fusion in model systems for exocytosis: Characterization of chromaffin granule fusion mediated by synexin and calelectrin. In: Molecular Mechanisms of Membrane Fusion (Ohki S, Doyle D, Flanagan T, Hui SW, Mayhew E, eds), pp 325–340, Plenum Press New York

    Google Scholar 

  • Zimmerberg J, Curran M, Cohen FS, Brodwick M (1987) Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc Natl Acad Sci USA 84: 1585–1589

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg J, Vogel SS, Chernomordik LV (1993) Mechanisms of membrane fusion. Annu Rev Biophys Biomol Struct 22: 433–466

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Düzgüneş§, N. (1995). Molecular Mechanisms of Membrane Fusion. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics