Skip to main content

Purification and Substrate Specificity of the Human Erythrocyte Aminophospholipid Transporter

  • Conference paper
Trafficking of Intracellular Membranes:

Part of the book series: NATO ASI Series ((ASIH,volume 91))

Abstract

The asymmetric transmembrane distribution of phospholipids across biological membranes is maintained by a combination of slow transmembrane flip-flop, cytoskeletalprotein interactions and protein-mediated inward transport of aminophospholipids. These latter proteins are members of a growing class of transporters, or flippases, that catalyze the transmembrane transport of phospholipids (Devaux and Zachowski, 1993). The aminophospholipid flippase selectively transports phosphatidylserine (PS) and phosphatidylethanolamine (PE) to the cytofacial surface of the membrane. The flippase is Mg2+-ATP-dependent and is inhibited by sulfhydryl reagents, vanadate and Ca2+ (Daleke and Huestis, 1985; Bitbol, et al., 1987; Connor and Schroit, 1988). This transporter demonstrates a high degree of specificity for its lipid substrate. The amine functionality is essential; acylation of the amine group of PS prevents transport by the flippase (Morrot, et al., 1989; Drummond and Daleke, 1994) and N-methylation of PE reduces transport of this lipid (Morrot, et al., 1989). Only the natural sn-1,2 glycerol isomer of PS is a substrate; the sn-2,3 isomer of PS is not transported in fibroblasts (Martin and Pagano, 1987). In contrast, the flippase is insensitive to acyl chain length (Daleke and Huestis, 1985) and is relatively insensitive to acyl chain composition.1 These characteristics allow the inclusion of spin labeled (Seigneuret and Devaux, 1984), short chain (Daleke and Huestis, 1985), fluorescent (Connor and Schroit, 1987) or radiolabeled (Tilley, et al., 1986; Daleke and Huestis, 1989; Anzai et al., 1993) fatty acid as reporter groups for the measurement of lipid transport in intact membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anzai K, Yoshioka Y, Kirino Y (1993) Novel radioactive phospholipid probes as a tool for measurement of phospholipid translocation across biomembranes. Biochim. Biophys. Acta 1151: 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Auland ME, Morris MB, Roufogalis BD (1994) Separation and characterization of two Mg2+-ATPase activities from the human erythrocyte membrane. Arch. Bioch. Biophys. 312 : 272–277.

    Article  CAS  Google Scholar 

  • Bitbol M, Fellmann P, Zachowski A, Devaux PF (1987) Ion regulation of phosphatidylserine and phosphatidylethanolamine outside-inside translocation in human erythrocytes. Biochim. Biophys. Acta 904 : 268–282.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay A, London E (1987) Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry 26: 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Colleau M, Hervé P, Fellmann P, Devaux PF (1991) Transmembrane diffusion of fluorescent phospholipids in human erythrocytes. Chem. Phys. Lip. 57: 29–37.

    Article  CAS  Google Scholar 

  • Comfurius P, Zwaal RFA (1977) The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim. Biophys. Acta 467: 146–164.

    Article  Google Scholar 

  • Connor J, Schroit AJ (1987) Determination of lipid asymmetry in human red cells by resonance energy transfer. Biochemistry 26: 5099–5105.

    Article  PubMed  CAS  Google Scholar 

  • Connor J, Schroit AJ (1988) Transbilayer movement of phosphatidylserine in erythrocytes: Inhibition of transport and preferential labeling of a 31 000-dalton protein by sulfhydryl reactive reagents. Biochemistry 27: 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Connor J, Bar-Eli M, Gillium KD, Schroit AJ (1992) Evidence for a structurally homologous Rh-like polypeptide in Rhnull erythrocytes. J. Biol. Chem. 267: 26050–26055.

    PubMed  CAS  Google Scholar 

  • Daleke DL, Huestis WH (1985) Incorporation and translocation of aminophospholipids in human erythrocytes. Biochemistry 24: 2406–2416.

    Article  Google Scholar 

  • Daleke DL, Huestis WH (1989) Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids. J. Cell Biol. 108: 1375–1385.

    Article  PubMed  CAS  Google Scholar 

  • Daleke DL, Cornely-Moss K, Smith CM (1990) Partial purification of a candidate aminophospholipid transporter. J. Cell Biol. 111: 321a.

    Google Scholar 

  • Devaux PF, Zachowski A (1993) “Transmembrane lipid asymmetry in eukaryotes” in New Developments in Lipid-Protein Interactions and Receptor Function. Wirtz KWA, Packer L, Gustafsson JÅ, Evangelopolous AE, Changeux JP (eds) Plenum New York 213–226.

    Chapter  Google Scholar 

  • Drummond DC, Daleke DL (1994) Synthesis and characterization of pH-dependent “caged” aminophospholipids. Chem. Phys. Lipids, in press.

    Google Scholar 

  • Hall MP, Huestis WH (1993) Phosphatidylserine headgroup diastereomers translocate equivalently across human erythrocyte membranes. Biochim. Biophys. Acta 1190: 243–247.

    Google Scholar 

  • Juneja LR, Kazuoka T, Goto N, Yamane T, Shimizu S (1989) Conversion of phosphatidylcholine to phosphatidylserine by various phospholipases D in the presence of L- or D-serine. Biochim. Biophys. Acta 1003: 277–283.

    CAS  Google Scholar 

  • Koshland DE Jr. (1987) Switches, thresholds and ultrasensitivity. TIBS 12: 225–229.

    CAS  Google Scholar 

  • Loh RK, Huestis WH (1993) Human erythrocyte membrane lipid asymmetry: Transbilayer distribution of rapidly diffusion phosphatidylserines. Biochemistry 32: 11722–11726.

    Article  PubMed  CAS  Google Scholar 

  • Martin O, Pagano RE (1987) Transbilayer movement of fluorescent analogs of phosphatidylserine and phosphatidylethanolamine at the plasma membrane of cultured cells. Evidence for a protein-mediated and ATP-dependent process(es). J. Biol. Chem. 262: 5890–5898.

    PubMed  CAS  Google Scholar 

  • Moriyama Y, Nelson N, Maeda M, Futai M (1991) Vanadate-sensitive ATPase from chromaffin granule membranes formed a phosphoenzyme intermediate and was activated by phosphatidylserine. Arch. Bioch. Biophys. 286: 252–256.

    Article  CAS  Google Scholar 

  • Morris MB, Auland ME, Xu Y-H, Roufogalis BD (1993) Characterization of the Mg2+-ATPase activity of the human erythrocyte membrane. Biochem. Mol. Biol. Int. 31: 823–832.

    PubMed  CAS  Google Scholar 

  • Morrot G, Hervé P, Zachowski A, Fellman P, Devaux P (1989) Aminophospholipid translocase of human erythrocytes: Phospholipid substrate specificity and effect of cholesterol. Biochemistry 28: 3456–3462.

    Article  PubMed  CAS  Google Scholar 

  • Morrot G, Zachowski A, Devaux PF (1990) Partial purification of the human erythrocyte Mg2+-ATPase. A candidate aminophospholipid translocase. FEBS Lett. 266: 29–32.

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (1993) Interaction of proteins with lipid headgroups. Lessons from protein kinase C. Ann. Rev. Biophys. Biomol. Struct. 22: 1–25.

    Article  CAS  Google Scholar 

  • Seigneuret M, Devaux PF (1984) ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes. Proc. Natl. Acad. Sci. USA 81: 3751–3755.

    Article  PubMed  CAS  Google Scholar 

  • Tilley L, Cribier S, Roelofsen B, Opden Kamp JAF, van Deenen LLM (1986) ATP-dependent translocation of aminophospholipids across the human erythrocyte membrane. FEBS Lett. 194: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Tilly RHJ, Senden JMG, Comfurius P, Bevers EM, Zwaal RFA (1990) Increased aminophospholipid translocase activity in human platelets during secretion. Biochim. Biophys. Acta 1029: 188–190.

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Henry JP, Devaux PF (1989) Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein. Nature 340: 75–76.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman ML, Daleke DL (1993) Regulation of a candidate phosphatidylserine-transporting ATPase by lipid. Biochemistry 32: 12257–12263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daleke, D.L., Lyles, J.V., Nemergut, E., Zimmerman, M.L. (1995). Purification and Substrate Specificity of the Human Erythrocyte Aminophospholipid Transporter. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics