Skip to main content

Cell Cycle Changes to the Golgi Apparatus in Animal Cells

  • Conference paper
  • 94 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 91))

Abstract

Dramatic changes occur to the morphology of the Golgi apparatus at the onset of mitosis in animal cells (Warren, 1985, 1993) and figure 1 provides a schematic view of this process. The compact, juxta-nuclear reticulum found in interphase cells is converted, during prophase, to several hundred discrete Golgi stacks. This is thought to occur by scission of the tubules that connect equivalent cisternae in adjacent stacks (Rambourg and Clermont, 1990; Rothman and Warren, 1994). During the middle phases of mitosis (prometaphase, metaphase and anaphase), each stack undergoes complete vesiculation to yield Golgi clusters (Lucocq et al, 1987; Lucocq and Warren, 1987). These clusters then shed vesicles which become dispersed throughout the mitotic cell cytoplasm (Lucocq et al., 1989). During telophase, these processes are reversed; clusters grow by accretion of vesicles which then fuse to reform Golgi stacks. The dispersed stacks then move to the peri-centriolar region, probably by movement along microtubules (Ho et al, 1989; Corthésy-Theulaz et al, 1992), where they undergo homotypic fusion to re-form the interphase Golgi apparatus (Lucocq et al., 1989). The end result of this stochastic process is that the original mother Golgi apparatus is equally distributed between the two daughter cells (Birky, 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birky C W (1983) The partitioning of cytoplasmic organelles at cell division. Int Rev Cytology 15: 49–89

    Google Scholar 

  • Bretscher MS , Munro S (1993) Cholesterol and the Golgi apparatus. Science 261:1–3

    Article  Google Scholar 

  • Collins R, Warren G (1992) Sphingolipid transport in mitotic HeLa cells. J biol Chem 267: 24906–24911

    PubMed  CAS  Google Scholar 

  • Corthésy-Theulaz I, Pauloin A, Pfeffer SR (1992) Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J Cell Biol 118: 1333–1346

    Article  PubMed  Google Scholar 

  • Featherstone C, Griffiths G, Warren G (1985) Newly synthesized G protein of vesicular stomatitis virus is not transported to the Golgi complex in mitotic cells. J Cell Biol 101: 2036–2046

    Article  PubMed  CAS  Google Scholar 

  • Ho WC, Allan VJ, van Meer G, Berger E G, Kreis T E (1989) Reclustering of scattered Golgi elements occurs along microtubules. Eur J Cell Biol 48: 250–263

    PubMed  CAS  Google Scholar 

  • Kreiner T, Moore H-P (1990) Membrane traffic between secretory compartments is differentially affected during mitosis. Cell Regulation 1: 415–424

    PubMed  CAS  Google Scholar 

  • Lucocq JM, Berger EG, Warren G (1989) Mitotic Golgi fragments in HeLa Cells and their role in the reassembly pathway. J Cell Biol 109: 463–474

    Article  PubMed  CAS  Google Scholar 

  • Lucocq JM, Pryde JG, Berger EG, Warren G (1987) A mitotic form of the Golgi apparatus in HeLa cells. J Cell Biol 104: 865–874

    Article  PubMed  CAS  Google Scholar 

  • Lucocq JM, Warren G (1987) Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLa cells. EMBO J 6: 3239–3246

    PubMed  CAS  Google Scholar 

  • Machamer CE (1993) Targeting and retention of Golgi membrane proteins. Curr Op Cell Biol 5: 606–612

    Article  PubMed  CAS  Google Scholar 

  • Mackay DM, Kieckbusch R, Adamczewski JP, Warren G (1994) Cyclin A-mediated inhibition of intra-Golgi transport requires p34cdc2 . FEBS Lett 336: 549–554

    Article  Google Scholar 

  • Misteli T, Warren G (1994) Transport vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system. J Cell Biol 125: 269–282

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T, Hoe MH, Slusarewicz P, Rabouille C, Watson R, Hunte F, Watzele G, Berger EG, Warren G (1994) Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J 13: 562–574

    PubMed  CAS  Google Scholar 

  • Nilsson T, Slusarewicz P, Hoe M, Warren G (1993) Kin Recognition: A Model for the Retention of Golgi Enzymes. FEBS Lett 330: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Orci L, Montesano R, Meda P, Malaisse-Lagae F, Brown D, Perrelet A, Vassalli P (1981) Hetergeneous distribution of filipin-cholesterol complexes across the cisternae of the Golgi apparatus. Proc Natl Acad Sci (USA) 78: 293–297

    Article  CAS  Google Scholar 

  • Rambourg A, Clermont Y (1990) Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur J Cell Biol 51: 189–200

    PubMed  CAS  Google Scholar 

  • RothmanJE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355: 409–416

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Warren G (1994) Implications of the SNARE hypothesis for the specificity dynamics topology of intracellular membranes. Curr Biol 4: 220–233

    Article  PubMed  CAS  Google Scholar 

  • Slusarewicz P, Nilsson T, Hui N, Watson R, Warren G (1994) Isolation of a matrix that binds medial Golgi enzymes. J Cell Biol 124: 405–414

    Article  PubMed  CAS  Google Scholar 

  • Souter E, Pypaert M, Warren G (1993) The Golgi stack reassembles during telophase before arrival of proteins transported from the endoplasmic reticulum. J Cell Biol 122: 533–540

    Article  PubMed  CAS  Google Scholar 

  • Stuart R, Mackay D, Adamczewski J, Warren G (1993) Inhibition of intra-Golgi transport in vitro by mitotic kinase. J biol Chem 268: 4050–4054

    PubMed  CAS  Google Scholar 

  • Th’ng JP, Wright PS, Hamaguchi J, Lee MG, Norbury CJ, Nurse P, Bradbury EM (1990) The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63: 313–24

    Article  PubMed  Google Scholar 

  • Warren G (1985) Membrane Traffic Organelle Division. Tr Biochem Sci 10: 439–443

    Article  CAS  Google Scholar 

  • Warren G (1993) Membrane partitioning during cell division. Ann Rev Biochem 62: 323–348

    Article  PubMed  CAS  Google Scholar 

  • Zieve GW, Turnbull D, Mullins JM, McIntosh JR (1980) Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Exp Cell Res 126: 397–405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Warren, G. (1995). Cell Cycle Changes to the Golgi Apparatus in Animal Cells. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics