Skip to main content

Control of Intracellular Free Calcium in Neurons and Endocrine Cells

  • Conference paper
  • 93 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 91))

Abstract

Intracellular free calcium concentrations in both neurons and endocrine cells are regulated by transporters and ion channels present either in the cell membrane or in the membrane of intracellular organelles. Low intracellular free Ca2+ levels in resting cells are maintained by active Ca2+ extrusion from the cytoplasm into the extracellular space via the Na+/Ca2+-exchanger and the plasma membrane Ca2+-ATPase (PMCA), as well as Ca2+ uptake from the cytoplasm into various intracellular compartments. Sequestration by intracellular compartments is accomplished by uni- and antiporter systems present in mitochondria or secretory granules and a family of endoplasmic and sarcoplasmic reticulum Ca2+-ATPases termed SERCA. Upon cell stimulation extracellular Ca2+ may enter the cell via voltage operated (VOCS), receptor operated (ROCS) or second messenger operated (SMOCS) calcium channels. An increase of cytosolic free Ca2+ may also be caused by Ca2+ release from intracellular compartments by diffusible second messengers activating IP3 or ryanodine receptor calcium channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anwyl R (1991) Modulation of vertebrate neuronal calcium channels by transmitters. Brain Res Rev 16: 265–281

    Article  PubMed  CAS  Google Scholar 

  • Barnard EA (1992) Receptor classes and the transmitter-gated ion channels. TIBS 17: 368–374

    PubMed  CAS  Google Scholar 

  • Bean BP (1992) Pharmacology and electrophysiology of ATP-activated ion channels. TiPS 13: 87–90

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Aniksztejn L, & Bregestovski P (1992) Protein kinase C modulation of NMDA currents: An important link for LTP induction. TINS 15: 333–339

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361: 315–325

    Article  PubMed  CAS  Google Scholar 

  • Bertolino M & Llinâs R (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Neurosci 32: 399–421

    CAS  Google Scholar 

  • Bulenda D & Gratzl M (1985) Matrix free calcium in isolated chromaffin vesicles. Biochemistry 24: 7760–7765

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (1992) The Ca2+ pump of the plasma membrane. J Biol Chem 267: 2115–2118

    PubMed  CAS  Google Scholar 

  • Changeux J-P, Galzi J-L, Devillers-Thiéry A, & Betrand D (1992) The functional architecture of the acetylcholine nicotinic receptor explored by affinity labelling and site-directed mutagenesis. Quart Rev Biophys 25: 395–432

    Article  CAS  Google Scholar 

  • DiPolo R & Beaugé L (1987) Characterization of the reverse Na+/Ca2+ exchange in squid axons and its modulation by Ca2+ and ATP. J Gen Physiol 90: 505–525

    Article  PubMed  CAS  Google Scholar 

  • Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not by AMPA. Nature 351: 745–748

    Article  PubMed  CAS  Google Scholar 

  • Egebjerg J, Heinemann SF (1993) Ca2 + permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc. Natl. Acad. Sci. USA 90: 755–759

    Article  PubMed  CAS  Google Scholar 

  • Engling R, Föhr KJ, Kemmer TP, & Gratzl M (1991) Effect of GTP and calcium on inositol 1,4,5,-trisphosphate induced calcium release from permeabilized rat exocrine pancreatic acinar cells. Cell Calcium 12: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Derkach V, & Surprenant A (1992) ATP mediates fast synaptic transmission in mammalian neurons. Nature 357: 503–507

    Article  PubMed  CAS  Google Scholar 

  • Ferris CD & Snyder SH (1992) Inositol 1,4,5-trisphosphate-activated calcium channels. Annu Rev Physiol 54: 469–488

    Article  PubMed  CAS  Google Scholar 

  • Föhr KJ, Scott J, Ahnert-Hilger G, & Gratzl M (1989) Characterization of the inositol 1,4,5-trisphosphate-induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p-hydroxymercuribenzoate. Biochem J 262: 83–89

    PubMed  Google Scholar 

  • Föhr KJ, Ahnert-Hilger G, Stecher B, Scott J, & Gratzl M (1991) GTP and calcium modulate the inositol 1,4,5-trisphosphate dependent calcium release in streptolysin O permeabilized bovine adrenal chromaffin cells. J Neurochem 56: 665–670

    Article  PubMed  Google Scholar 

  • Föhr KJ, Mayerhofer A, Sterzik K, Rudolf M, Rosenbusch B, & Gratzl M (1993) Concerted action of human chorionic gonadotrophin and norepinephrine on intracellular-free calcium in human granulosa-lutein cells: evidence for the presence of a functional α-adrenergic receptor. J Clin Endocrinology and Metabolism 76: 367–373

    Article  Google Scholar 

  • Galione A (1993) Cyclic ADP-ribose: a new way to control calcium. Science 259: 325–326

    Article  PubMed  CAS  Google Scholar 

  • Haigh J & Phillips JH (1993) Indirect coupling of calcium transport in chromaffin granule ghosts to the proton pump. NeuroReport 4: 571–574

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GIurR-B: a base-paired intron-exon strucutre determines postion and efficiency. Cell 75: 1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Biel M, & Flockerzi V (1994) Molecular basis for Ca2 + channel diversity. Annu Rev Neurosci 17: 399–418

    Article  PubMed  CAS  Google Scholar 

  • Jackson TR, Patterson SI, Thastrup O, & Hanley MR (1988) A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem J 253: 81–86

    PubMed  CAS  Google Scholar 

  • Khan AA, Steiner JP, Klein MG, Schneider MF, & Snyder SH (1992) IP3 receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor. Science 257: 815–818

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Brauer HI & Gratzl M (1982) Uptake of calcium by isolated secretory vesicles from adrenal medulla. Biochim Biophys Acta 691: 61–70

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Brauer HI & Gratzl M (1983) Effects of monovalent and divalent cations on calcium fluxes accross chromaffin secretory membrane vesicles. J Neurochem 41: 1269–1283

    Article  PubMed  CAS  Google Scholar 

  • Lagnado L & McNaughton PA (1990) Electrogenic properties of the Na:Ca exchange. J Membr Biol 113: 177–191

    Article  PubMed  CAS  Google Scholar 

  • Lückhoff A & Clapham (1992) Inositol 1,3,4,5-tetrakishposhphate activates an endothelial Ca2+-permeable channel. Nature 355: 356–358

    Article  PubMed  Google Scholar 

  • Lüttgau HC & Niedergerke R (1958) The antagonism between Ca2+ and Na+ ions on the frog heart. J Physiol 143: 486–505

    PubMed  Google Scholar 

  • Meldolesi J & Pozzan T (1987) Pathways of Ca2+ influx at the plasma membrane: Voltage-, receptor-, and second messenger-operated channels. Exp Cell Res 171: 271–283

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ (1991) The control of neuronal Ca2+ homeostasis. Prog Neurobiol 37: 255–285

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603

    Article  PubMed  CAS  Google Scholar 

  • Nathanson MH, Fallon MB, Padfield PJ, & Maranto AR (1994) Localization of the type 3 inositol 1,4,5-triphosphate receptor in the Ca2+ wave trigger zone of pancreatic acinar cells. J Biol Chem 269: 4693–4696

    PubMed  CAS  Google Scholar 

  • Nicoll DA, Longoni S, & Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250: 562–565

    Article  PubMed  CAS  Google Scholar 

  • Niggli V, Penniston JT, & Carafoli E (1979) Purification of the (Ca2+ +Mg2+)-ATPase from human erythrocyte membranes using a calmodulin affinity column. J Biol Chem 254: 9955–9958

    PubMed  CAS  Google Scholar 

  • Reiffen FU & Gratzl M (1986a) Chromogranins, widespread in endocrine and nervous tissue, bind calcium. FEBS Lett 195: 327–330

    Article  PubMed  CAS  Google Scholar 

  • Reiffen FU & Gratzl M (1986b) Calcium binding to chromaffin vesicle matrix proteins: Effect of pH, magnesium, and ionic strength. Biochemistry 25: 4402–4406

    Article  PubMed  CAS  Google Scholar 

  • Saermark T, Krieger-Brauer HI, & Gratzl M (1983) Calcium uptake to purified secretory vesicles from bovine neurohypophyses. Biochim Biophys Acta 727: 239–245

    Article  PubMed  CAS  Google Scholar 

  • Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16: 403–443

    Article  PubMed  CAS  Google Scholar 

  • Schatzmann HJ (1973) Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol 235: 551–569

    PubMed  CAS  Google Scholar 

  • Schneggenburger R, Zhou Z, Konnerth A, & Neher E (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Spedding M & Paoletti R (1992) Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacological Reviews 44: 363–376

    PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, & Schulz I (1983) Release of calcium from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69

    Article  PubMed  CAS  Google Scholar 

  • Strehler EE (1991) Recent advances in the molecular characterization of plasma membrane Ca2+ pumps. J Membr Biol 120: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela M, Canzoniero LMT, Cragoe EJ, Di Renzo G, Annunziato L (1990) Na+/Ca2+ exchange activity in central nerve endings II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tubero-infundibular hypothalamic neurons. Molec Pharmac 38: 393–400

    CAS  Google Scholar 

  • Taylor CW, & Marshall CB (1992) Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. TiBS 17: 403–407.

    PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, & Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. TINS 11: 431–438

    PubMed  CAS  Google Scholar 

  • Yoo SH (1994) pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-triphosphate receptor antibody. J Biol Chem 269: 12001–12006

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Föhr, K.J., Mayerhofer, A., Gratzl, M. (1995). Control of Intracellular Free Calcium in Neurons and Endocrine Cells. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics