Advertisement

Niemann-Pick Disease Type A and B- Natural History Of Lysosomal Sphingomyelinase

  • Klaus Feriinz
  • Konrad Sandhoff
Conference paper
Part of the NATO ASI Series book series (volume 91)

Abstract

In 1914 the German physician Albert Niemann reported upon a child affected with hepatosplenomegaly, lymphadenopathy and impairment of the central nervous system who died before 2 years of age [Niemann, 1914]. Histological studies on pathological cells performed by Ludwig Pick revealed the occurrence of characteristic foamy cells, similar but not identical with those found in Gaucher disease [Pick, 1927]. In 1934, E. Klenk discovered a massive accumulation of sphin-gomyelin in tissue of patients [Klenk, 1935]. Due to the broad heterogeneity of clinical and pathological manifestations, classification of Niemann-Pick disease in three distinct types A, B and C was proposed by Crocker in 1961 [Crocker, 1961]. Types D-F, showing different pathobiological properties, have been added during the following years. In 1965, R.O. Brady and coworkers finally demonstrated a profound decrease in acid sphingomyelinase activity in affected cells [Brady et al., 1966].

Keywords

Gauche Disease Residual Enzyme Activity Metachromatic Leukodystrophy Acid Sphingomyelinase Sphingomyelinase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albouz, S., Hauw, J.J., Berwald-Netter, Y., Boutry, J.M., Bourdon, R. and Baumann, N. (1981) Biomed. Express. 35, 218–220.Google Scholar
  2. Barton, N.W., Brady, R.O., Dambrosia, J.M., Di Bisceglie, A.M., Doppelt, S.H., Hill, S.C., Mankin, H.J., Murray, G.J., Parker, R.I., Argoff, C.E., Grewal, R.P., Yu, K.-T., and Collaborators (1991). Replacement therapy for inherited enzyme deficiency-macrophage targeted glucocerebrosidase for Gaucher’s disease. N. Engl. J. Med. 324: 1464–1470.PubMedCrossRefGoogle Scholar
  3. Bayever, E., Kamani, N., Ferreira, P., Machin, G.A., Yudkoff, M., Conrad, K., Palmieri, M., Radcliffe, J., Wenger, D.A., and August, C.S. (1992) Bone marrow transplantation for Niemann-Pick type 1A disease. J. Inher. Met. Dis. 15, 919–928.CrossRefGoogle Scholar
  4. Bembi, B., Comelli, M., Scaggiante, B., Pineschi, A., Rapelli, S., Gornati, R., Montorfano, G., Berra, B, Agosti, E, and Romeo, D. (1992) Treatment of sphingomyelinase deficiency by repeated implantations of amniotic epethelial cells. Am. J. Med. Genet. 44, 527–533.PubMedCrossRefGoogle Scholar
  5. Bernert, J. T., and Ullman, M. D. (1981). Biosynthesis of sphingomyelin from erythro- ceramide and phosphatidylcholine by a microsomal cholinephosphotransferase. Biochim. Biophys. Acta 666: 99–109.PubMedGoogle Scholar
  6. Besley, G.T., and Elleder, M. (1986). Enzyme activities and phospholipid storage paterns in brain and spleen samples from Niemann-Pick disease variants: A comparison of neuropathic and non-neuropathic forms. J. Inherited Metab. Dis. 9: 59.PubMedCrossRefGoogle Scholar
  7. Besley, G.T.N., Hoogeboom, A.J.M., Hoogeveen, A., Kleijer, W.J., and Galjaard, H. (1980). Somatic cell hybridization studies showing different gene mutations in Niemann-Pick variants. Hum. Genet. 54: 409–412.PubMedCrossRefGoogle Scholar
  8. Blouin, A., Bolender, R.P., and Weibel, E.R. (1977). Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. J. Cell. Biol. 72: 441–455.PubMedCrossRefGoogle Scholar
  9. Brady, R.O. (1983). Sphingomyelin lipidosis: Niemann- Pick disease. The Metabolic Basis of Inherited Disease, eds. Stanbury, J.B., Wyngaarden, J.B., and Fredrickson, D.S. (Mc Graw-Hill, New York) 7th ed.: 831–884.Google Scholar
  10. Brady, R.O., Kanfer, J.N., Mock, M.B., and Fredrickson, D.S. (1966). The metabolism of sphingomyelin. Evidence of an encymatic deficiency in Niemann-Pick disease. Proc. Natl. Acad. Sci. USA 55: 367–370.CrossRefGoogle Scholar
  11. Bruns, G., and Gerald, P.S. (1974). Human acid phosphatase in somatic cell hybrids. Science 184: 480–481.PubMedCrossRefGoogle Scholar
  12. Bunza, A., Lowden, J.A., and Charlton, K.M. (1979). Niemann-Pick disease in a poodle dog. Vet. Pathol. 16: 530–538.CrossRefGoogle Scholar
  13. Chatterjee, S., and Gosh, N. (1989). Neutral sphingomyelinase from human urine. J. Biol. Chem. 264: 12554–12561.PubMedGoogle Scholar
  14. Cone, R., and Mulligan, R.C. (1984). High efficiency gene transfer into mammalian cells: Generation of helper-free recombinant retrovirus with broad mammalian host range. Proc. Natl. Acad. Sci. USA 81: 6349–6355.PubMedCrossRefGoogle Scholar
  15. Conzelmann, E., Sandhoff, K. (1991). Biochemical Basis of Late-Onset Neurolipidoses. Dev. Neurosci. 13: 197–204.PubMedCrossRefGoogle Scholar
  16. Crocker, A.C. (1961). The cerebral defect in Tay-Sachs disease and Niemann-Pick disease. J Neurochem. 7: 69–73.PubMedCrossRefGoogle Scholar
  17. Dinur, T. Schuchman, E.H., Fibach, E., Dagan, A., Suchi, M., Desnick, R.J., and Gatt, S. (1992) Toward gene therapy for Niemann-Pick diseas (NPD)-Separation of retrovirally corrected and non corrected NPD fibroblasts using a novel fluorescent sphingomyelin, Hum. Gene Ther. 3, 633–639CrossRefGoogle Scholar
  18. Diringer, H., and Koch, M.A. (1973). Biosynthesis of sphingomyelin: Transfer of phosphorylcholine from phosphatidylcholine to erythro-ceramide in a cell-free system. Hoppe-Seyler’s Z. Physiol. Chem. 354: 1661–1665.PubMedGoogle Scholar
  19. Elleder, M. (1989) Niemann-Pick Disease. Path. Res. Pract. 185: 293–328.PubMedCrossRefGoogle Scholar
  20. Ferlinz, K., Hurwitz, R., and Sandhoff K. (1991). Molecular Basis of Acid Sphingomyelinase Deficiency in a Patient with Niemann-Pick Disease Type A. Biochem. Biophys. Res. Commun. 179: 1187–1191.PubMedCrossRefGoogle Scholar
  21. Ferlinz, K., Hurwitz, R., Vielhaber, G., Suzuki, K., and Sandhoff, K. (1994). Occurrence of two molecular forms of human acid sphingomyelinase, Biochem. J., in press.Google Scholar
  22. Fredrickson, D.S., Sloan, H.R. (1972). Sphingomyelin lipidoses: Niemann-Pick disease, in Stanbury, J. B., Wyngaarden, J. B., Fredrickson, D. S. (eds): The Metabolic Bases of Inherited Disease, 3th ed.: 783, New York, Mc Graw-HillGoogle Scholar
  23. Freeman, S.J., Davidson, D.J., Shankaran, P., and Callahan, J.W. (1983). Monoclonal antibodies against human placental sphingomyelinase. Biosci. Rep. 3: 545–550.PubMedCrossRefGoogle Scholar
  24. Fujino, Y., Negishi, T. (1968). Investigations of the enzymatic synthesis of sphingomyelin. Biochim. Biophys. Acta 152: 428–433.PubMedGoogle Scholar
  25. Futerman, A.H., Stieger, B., Hubbard, A.L., and Pagano, R.E. (1990). Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem. 265: 8650–8657.PubMedGoogle Scholar
  26. Gosh, N., Chatterjee, S., and Sabbadini, R. (1993). Neutral sphingomyelinase from skeletal muskle: It’s lokalization, solubilisation and possible involvement in Ca2+ release. FASEB J. 7/7, 1255.Google Scholar
  27. Henry, I., Puech, A., Antignac, C., Couillin, P., Jean-Pierre, M., Ahnine, L., Barichard, F., Boehm, T., Augerau, P., Scrable, H., Rabbitts, T.H., Rochefort, H., Cavenee, W., and Junien, C. (1989). Subregional mapping of BWS, CTSD, MYODI, and T-ALL breakpoint in 11–15. Cytogenet Cell. Genet. 51: 1013–1016.Google Scholar
  28. Hurwitz, R., Ferlinz, K., and Sandhoff, K. (1994b). The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts, Biol. Chem. Hoppe-Seyler, in press.Google Scholar
  29. Hurwitz, R., Ferlinz, K., Vielhaber, G., Moczall, H. (1994a), Processing of human acid sphingomyelinase in normal and l-cell fibroblasts. J. Biol. Chem. 269: 5440–5445.PubMedGoogle Scholar
  30. Jeckel, D., Karrenbauer, A., Birk, R., Schmidt, R.R., and Wieland, F. (1990). Sphingomyelin is synthesized in the cis Golgi. FEBS Lett. 261: 155–157.PubMedCrossRefGoogle Scholar
  31. Jobb, E.A., and Callahan, J.W. (1989) Biosynthesis of sphingomyelinase in normal and Niemann-Pick fibroblasts. Biochem. Cell Biol. 67: 801–807.PubMedCrossRefGoogle Scholar
  32. Jones, C., and Kao, F.T. (1978). Regional mapping of the gene for lysosomal acid phosphatase (ACP-2) using a hybride clone panel containing segments of human chromosome 11. Hum. Genet. 45: 1–10.PubMedCrossRefGoogle Scholar
  33. Jones, C.S., Shankaran, P., and Callahan, J.W. (1981). Purification of sphingomyelinase to appearent homogeneity by using hydrophobic chromatography. Biochem J. 195: 373–379.PubMedGoogle Scholar
  34. Klenk, E. (1935). Über die Natur der Phosphatide und anderer Lipide des Gehirns und der Leber bei der Niemann-Pickschen Krankheit. Z. Physiol. Chem. 235: 24–25.CrossRefGoogle Scholar
  35. Konrad, R., and Wilson, D. (1987). Assignment of the gene for acid lysosomal sphingomyelinase to human chromosome 17. Cytogenet. Cell Genet. 46: 641–643.Google Scholar
  36. Koval, M., and Pagano, E. (1991). Intracellular transport and metabolism of sphingomyelin. Biochim. Biophys. Acta 1082: 113–125.PubMedGoogle Scholar
  37. Kozak, M. (1987). An analysis of 5′- noncoding sequences from 699 vertebrate messenger RNAs. Nucleic. Acids Res. 15: 8126–8149.CrossRefGoogle Scholar
  38. Kurth, J. and Stoffel, W. (1991). Human placental sphingomyeiinase. Biol. Chem Hoppe-Seyler 372: 215–223.PubMedCrossRefGoogle Scholar
  39. Levade, T., Potier, M., Salvayre, R., and Douste-Blazy L. (1985). Molecular weight of human brain neutral sphingomyelinase determined in situ by radiation inactivation method. J. Neurochem. 45: 630–634.PubMedCrossRefGoogle Scholar
  40. Levade, T., Salvayre, R., and Douste-Blazy, L. (1986). Sphingomyelinases and Niemann-Pick Disease. J. Clin. Chem. Biochem. 24: 205–220.Google Scholar
  41. Levran, O., Desnick, R.J., and Schuchman E.H. (1991a). Niemann-Pick disease: A frequent missense mutation in the acid sphingomyelinase gene of Ashkenazi Jewish type A and B patients. Proc. Natl. Acad. Sci. USA 88: 3748–3752.PubMedCrossRefGoogle Scholar
  42. Levran, O., Desnick, R.J., and Schuchman, E.H. (1991b). Niemann-Pick Type B Disease. J. Clin. Invest. 88: 806–810.PubMedCrossRefGoogle Scholar
  43. Levran, O., Desnick, R.J., and Schuchman E.H. (1993) Hum. Mut. 2, 205–206.CrossRefGoogle Scholar
  44. Lüllmann-Rauch, R. (1974) Lipidosis-like alterations in spinal cord and cerebrallar cortex of rats treated with chlophentermine or tricyclic anti-depressants. Acta Neurophathol. (Berl.) 29, 237CrossRefGoogle Scholar
  45. Malgat, M., Maurice, A., and Baraud, J. (1986). Sphingomyelin and ceramide-phosphoethanolamine synthesis by microsomes and plasma membranes from rat liver and brain. J. Lipid Res. 27: 251–260.PubMedGoogle Scholar
  46. Marggraf, W.D., Zertani, R., Anderer, F.A., and Kanfer, J.N. (1982). The role of endogenous phosphatidylcholine and ceramide in the biosynthesis of sphingomyelin in mouse fibroblasts. Biochim. Biophys. Acta 710: 314.PubMedGoogle Scholar
  47. Maruyama, E.N., and Arima, M. (1989). Purification and characterization of neutral and acid sphingomyelinases from rat brain. J. Neurochem. 52: 611–618.PubMedCrossRefGoogle Scholar
  48. Morreau, H., Galjart, N.J., Gillemans, N., Willemsen, R., van der Horst, G.T.J., and d’Azzo, A. (1989). Alternative splicing of ß- galactosidase mRNA generates the classic lysosomal enzyme and a ß- galactosidase- related protein. J. Biol. Chem. 264: 20655–20663.PubMedGoogle Scholar
  49. Niemann, A. (1914). Ein unbekanntes Krankheitsbild. Jahrb. Kinderheilkd. 79: 1–3.Google Scholar
  50. Okazaki, T., Bielawska, A., Domae, N., Bell, R.M., and Hannun, Y.A. (1994). Characteristics and partial purification of a novel cytosolic magnesium independent, neutral sphingomyelinase activated the early signal transduction of 1α, 25-dihydroxyvitamin D3-induced HL-60 cell differentiation. J. Biol. Chem. 269, 4070–4077.PubMedGoogle Scholar
  51. Oshima, A., Kyle, J. W., Miller, R.D., Hoffmann, J. W., Powell, P.P., Grubb, J.H., Sly, W. S., Tropak, M., Guise, K.S., and Gravel, R.A. (1987). Cloning, sequencing, and expression of cDNAfor human ß- glucuronidase. Proc. Acad. Natl. Sci. USA 84: 685–689.CrossRefGoogle Scholar
  52. Pereira, L.V., Desnick, R.J., Adler, D.A., Disteche, C.M., and Schuchman, E.H. (1991). Regional Assignment of the Human Acid Sphingomyelinase Gene (SMPD1) by PCR Analysis of Somatic cell Hybrids and in Situ Hybridization to 11p15.1-p15.4. Genomics 9: 229–234.CrossRefGoogle Scholar
  53. Pick, L. (1927). Über die kipoidzellige Splenohepatomegalie typus Niemann-Pick als Stoffwechselerkrankung. Med. Klin. 23: 1483–1486.Google Scholar
  54. Quintern, L.E., Zenk,T.S. and Sandhoff, K. (1989a) Biochim. Biophys Acta, 1003, 121–124.Google Scholar
  55. Quintern, L E., and Sandhoff K. (1991). Human acid sphingomyelinase from human urine. Methods in Enzymology 197: 536–540.PubMedCrossRefGoogle Scholar
  56. Quintern, LE., Schuchman, E.H., Levran, O., Suchi, M., Ferlinz, K., Reinke, H., Sandhoff, K., and Desnick, R. J. (1989b). Isolation of cDNA clones encoding human acid sphingomyelinase: occurence of alternatively processed transcripts. EMBO J. 8: 2469–2473PubMedGoogle Scholar
  57. Quintern, L.E., Weitz, G., Nehrkorn, H., Tager, ü.M., Schram, A.W., and Sandhoff, K. (1987). Acid sphingomyelinase from human urine: Purification and characterization. Biochim Biophys Acta 922: 323–336.PubMedGoogle Scholar
  58. Rao, B. G., and Spence, M. W. (1976). Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0. J. Lipid Res. 17: 506–510.PubMedGoogle Scholar
  59. Rousson, R., Vanier, M.T., and Louisot, P. (1986). Immunologic studies on acidic sphingomyelinases. In Enzymes of Lipid Metabolism II. Freysz, L, Dreyfus, H., Massareli, R., and Gatt, S. (eds). Plenum Publishing Corporation, New York: 273–283.Google Scholar
  60. Sakuragawa, N., Sakuragawa, M., Kuwabara, T., Pentchev, P.G., Barranger, J.A. and Brady, R.O. (1977) Science 196, 317–319.PubMedCrossRefGoogle Scholar
  61. Schuchman, E.H., Levran, O., Peireira, L.V., and Desnick, R.J. (1992). Structural Organization and Complete Nucleotide Sequence of the Gene Encoding Human Acid Sphingomyelinase (SMPD1). Genomics 12: 197–205.PubMedCrossRefGoogle Scholar
  62. Schuchman, E.H., Suchi, M., Takahashi, T., Sandhoff, K. and Desnick, R.J. (1991). Human acid sphingomyelinase. J. Biol. Chem. 266: 8531–8539.PubMedGoogle Scholar
  63. Sorge, J., Kuhl, W., West, C., and Beutler, E. (1987). Complete correction of the enzymatic defect of type I Gaucher disease fibroblasts by retroviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA 84: 906–912.PubMedCrossRefGoogle Scholar
  64. Soriano, P., Cone, R.D., Mulligan R.C., and Jaenisch, R. (1986). Tissue-specific and ectopic expression of genes introduced into transgenic mice by retroviruses. Science 234: 1409.PubMedCrossRefGoogle Scholar
  65. Spence, M.W., and Callahan, J.E. (1989). The Niemann-Pick Group of Diseases, in The Metabolic Basis of Inherited Disease, eds. Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle D. (McGraw-Hill, New York), 8th Ed.: 1655–1676.Google Scholar
  66. Spence, M.W., Burgess, J.K., Sperker, E.R., Hamed, L, and Murphy, M.G. (1981). Neutral sphingomyelinases of brain, in Callahan, J W., and Lowden, J. A. (eds): Lysosomes and Lysosomal Storage Diseases. New York, Raven.Google Scholar
  67. Spence, M.W., Byers, D.M., Palmer, F.B.C., and Cook H.W. (1989). A New Zn2+-stimulated sphingomyelinase in fetal bovine serum. J. Biol. Chem. 264: 5358–5363.PubMedGoogle Scholar
  68. Spence, M.W., Clarke, J.T.R., and Cook, H.W. (1983). Pathways of sphingomyelin metabolism in cultured fibroblasts from normal and sphingomyelin lipidosis subjects. J. Biol. Chem. 258: 8595–8600.PubMedGoogle Scholar
  69. Ullman, M.D., and Radin, N.S. (1974). The enzymatic formation of sphingomyelin from ceramide and lecethin in mouse liver. J. Biol. Chem. 249: 1506–1511.PubMedGoogle Scholar
  70. Vanha-Perttula, T. (1988). Sphingomyelinases in human, bovine and porcine seminal plasma. FEBS Lett. 233: 263–267PubMedCrossRefGoogle Scholar
  71. Vanier, M.T. (1983). Biochemical studies in Niemann-Pick disease. I. Major sphingolipids in liver and spleen. Biochim. Biophys. Acta 750: 178–184.PubMedGoogle Scholar
  72. Vanier, M.T., Ferlinz, K., Rousson, R., Duthel, S., Louisot, P., Sandhoff, K., and Suzuki, K. (1993). Deletion of Arginine (608) in Acid Sphingomyelinase is the Prevalent Mutation among Arabic Niemann-Pick Disease Type B Patients from Northern Africa. Hum. Genet 92: 325–330.PubMedCrossRefGoogle Scholar
  73. Vanier, M.T., Rodriguez-Lafrasse, C., Rousson, R., Duthel, S., Harzer, K., Pentchev, P. G., Revol, A., and Louisot, P. (1991). Type C Niemann-Pick Disease: Biochemical Aspects and Phenotypic Heterogeneiety. Dev. Neurosci. 13: 307–314.PubMedCrossRefGoogle Scholar
  74. Voelker, D.R., Kennedy, E.P. (1982). Cellular and enzymic synthesis of sphingomyelin. Biochemistry 21: 2753.PubMedCrossRefGoogle Scholar
  75. Weitz, G., Lindl, T., Hinrichs, U., and Sandhoff, K. (1983). Release of sphingomyelin phosphodiesterase (acid sphingomyelinase) by ammonium chloride from CL 1D mouse L-cells and human fibroblasts in partial purification and characterization of the exported enzymes. Hoppe-Seyler’s Z. Physiol. Chem. 364: 863–869.PubMedCrossRefGoogle Scholar
  76. Wenger, D.A., Sattler, M., Kudoh, T., Snyder, S.P., and Kingston, R.S. (1980). Niemann-Pick disease: A model in Siamese cats. Science 208: 1471–1473.PubMedCrossRefGoogle Scholar
  77. Wherrett, J.R. and Huterer, S. (1983) Deficiency of taurocholate-dependent phospholipase C acting on phosphatidylcholine in Niemann-Pick Disease. Neurochem. Res. 8, 89–99.PubMedCrossRefGoogle Scholar
  78. Williams, D.A., Lemischka, I.R., Nathan, D.G., and Mulligan, R.C. (1984). Introduction of new genetic material into pluripotent hematopoietic stem cells of mice. Nature 310: 475–478.Google Scholar
  79. Yamanaka, T., and Suzuki, K. (1982). Acid sphingomyelinase of human brain: Purification to homogeneity. J. Neurochem. 38: 1753–1758.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Klaus Feriinz
    • 1
  • Konrad Sandhoff
    • 1
  1. 1.Institut für Organische Chemie und BiochemieUniversität BonnBonnGermany

Personalised recommendations