Skip to main content

Glycolipids of Cellular Surfaces: Topology of Metabolism, Function and Pathobiochemistry of Glycolipid Binding Proteins

  • Conference paper
Trafficking of Intracellular Membranes:

Part of the book series: NATO ASI Series ((ASIH,volume 91))

  • 95 Accesses

Abstract

Glycosphingolipids (GSL) form cell and differentiation specific patterns in the outer leaflet of the plasma bilayer membrane. Gangliosides are sialic acid containing glycosphingolipids (GSL), which are highly enriched in nervous tissue, in which their more complex derivatives -namely, di,- tri,- and tetrasialogangliosides- are particulary prevalent. Except GM4, all gangliosides are derived from lactosylceramide (LacCer) and contain glucosylceramide (GlcCer) as a backbone in their molecule (Fig. 1). As components of the cell surface GSL function as binding sites for toxins, viruses, and bacteria (Karlsson, 1989). Moreover they are essential for cellular growth (Hanada et al., 1992; Spiegel, 1993), stabilize cellular membranes and keep them impermeable to protons even at low pH (Patton et al., 1992). GSL are modulators of growth factor receptors and are involved in cell adhesion processes as ligands for selectins (for review see Hakomori and Igarashi, 1993). A variety of intracellular sphingolipid metabolites were found to function as lipid second messengers (Merrill, 1991; Kolesnick, 1992; Olivera and Spiegel, 1992) suggesting their role in signal transduction (Okazaki et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barranger JA, Ginns EI (1989) Glucosylceramide lipidosis: Gaucher disease. In: The Metabolic Basis of Inherited Disease (Eds: Scriver CR, Beaudet AL, Sly WS, Valle D) McGraw-Hill, New York, 6th Ed, Vol II: 1677–1698

    Google Scholar 

  • Brändli AW, Hansson GC, Rodriguez-Boulan E, Simons K (1988) A polarized epithelial cell mutant deficient in translocation of UDP-galactose into the Golgi complex. J Biol Chem 263: 16283–16290

    PubMed  Google Scholar 

  • O’Brien JS (1989) ß-Galactosidase deficiency (GM1, gangliosidosis, galactosialidosis, and Morquio syndrome type B); ganglioside sialidase deficiency (mucolipidosis IV). In: The Methabolic Basis of Inherited Disease (Eds: Scriver CR, Beaudet AL, Sly WS, Valle D) McGraw-Hill, New York, 6th Ed, Vol II: 1797–1806

    Google Scholar 

  • O’Brien JS, Kretz KA, Dewji N, Wenger DA, Esch F, Fluharty AL (1988) Coding of two sphingolipid activator proteins (SAP-1 and SAP-2) by same genetic locus. Science 241: 1098–1101

    Article  PubMed  Google Scholar 

  • Briles EB, Li E, Kornfeld S (1977) Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J Biol Chem 252: 1107–1116

    PubMed  CAS  Google Scholar 

  • Carey DJ, Hirschberg CB (1981) Topography of sialoglycoproteins and sialyltransferases in mouse and rat liver Golgi. J Biol Chem 256: 989–993

    PubMed  CAS  Google Scholar 

  • Coste H, Martel M-B, Azzar G, Got R (1985) UDP glucose-ceramide glycosyltransferase from porcine submaxillary glands is associated with the Golgi apparatus. Biochim Biophys Acta 814: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Coste H, Martel M-B, Got R (1986) Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta 858: 6–12

    Article  PubMed  CAS  Google Scholar 

  • Cumar FA, Talman JF, Brady RO (1972) The biosynthesis of a disialoganglioside by galactosyltransferase from rat brain tissue. J Biol Chem 247: 2322–2327

    PubMed  CAS  Google Scholar 

  • Deutscher SL, Hirschberg CB (1986) Mechanism of galactosylation in the Golgi apparatus. J Biol Chem 261: 96–100

    PubMed  CAS  Google Scholar 

  • Fleischer B (1981) Orientation of glycoprotein galactosyltransferase and sialyltransferase enzymes in vesicles derived from rat liver Golgi apparatus. J Cell Biol 89: 246–255

    Article  PubMed  CAS  Google Scholar 

  • Fürst W, Machleidt W, Sandhoff K (1988) The precursor of sulfatide activator protein is processed to three different proteins. Hoppe Seyler’s Z Physiol Chem 369: 317–328

    Article  Google Scholar 

  • Fürst W, Sandhoff K (1992) Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta 1126: 1–16

    PubMed  Google Scholar 

  • Futerman AH, Stieger B, Hubbard AL, Pagano RE (1990) Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem 265: 8650–8657

    PubMed  CAS  Google Scholar 

  • Futerman AH, Pagano RE (1991) Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J 280: 295–302

    PubMed  CAS  Google Scholar 

  • Hakomori S, Igarashi Y (1993) Gangliosides and glycosphingolipids as modulators of cell growth, adhesion and transmembrane signaling. Adv Lipid Res 25: 147–162

    PubMed  CAS  Google Scholar 

  • Hanada K, Nishijima M, Kiso M, Hasegawa A, Fujita S, Ogawa T, Akamatsu Y (1992) Sphingolipids are essential for the growth of Chinese hamster ovary cells. J Biol Chem 267: 23527–23533

    PubMed  CAS  Google Scholar 

  • Hogan MV, Saito M, Rosenberg A (1988) Influence of monensin on ganglioside anabolism and neunte stability in cultured chick neurons. J Neurosci Res 20: 390–394

    Article  PubMed  CAS  Google Scholar 

  • Iber H, Sandhoff K (1989) Identity of GD1c, GT1a and GQ1b synthase in Golgi vesicles from rat liver. FEBS Lett 248: 18–22

    Article  PubMed  CAS  Google Scholar 

  • Iber H, Kaufmann R, Pohlentz G, Schwarzmann G, Sandhoff K (1989) Identity of GAI-, GM1a,- and GD1b synthase in Golgi vesicles from rat liver. FEBS Lett 248: 18–22

    Article  PubMed  CAS  Google Scholar 

  • Iber H, van Echten G, Sandhoff K (1991) Substrate specificity of α2→3 sialyltransferases in ganglioside biosynthesis of rat liver Golgi. Eur J Biochem 195: 115–120

    Article  PubMed  CAS  Google Scholar 

  • Iber H, van Echten G, Sandhoff K (1992a) Fractionation of primary cultured neurons: distribution of sialyltransferases involved in ganglioside biosynthesis. J Neurochem 58: 1533–1537

    Article  PubMed  CAS  Google Scholar 

  • Iber H, Zacharias C, Sandhoff K (1992b) The c-series gangliosides GT3, GT2, and GP1c are formed in rat liver Golgi by the same set of glycosyltransferases that catalyze the biosynthesis of asialo-, a-, and b-series gangliosides. Glycobiology 2: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Birk R, Schmidt RR, Wieland F (1990) Sphingomyelin is synthesized in the cis Golgi. FEBS Lett 261: 155–157

    Article  PubMed  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Burger KNJ, van Meer G, Wieland F (1992) Glycosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117: 259–267

    Article  PubMed  CAS  Google Scholar 

  • Karlsson K-A (1989) Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58: 309–350

    Article  PubMed  CAS  Google Scholar 

  • Kok JW, Babia T, Hoekstra D (1991) Sorting of sphingolipids in the endocytic pathway of HT29 cells. J Cell Biol 114: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick R (1992) Ceramide: a novel second messenger. Trends Cell Biol 2: 232–236

    Article  PubMed  CAS  Google Scholar 

  • Lannert H, Bünning C, Jeckel D, Wieland FT (1994) Lactosylceramide is synthesized in the lumen oft the Golgi apparatus. FEBS Lett 342: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Mandon E, Ehses I, Rother J, van Echten G, Sandhoff K (1992) Subcellular localization and membrane topology of serine palmitoyltransferase, 3-dehydrosphinganine reductase, and sphinganine N-acyltransferase in mouse liver. J Biol Chem 267: 11144–11148

    PubMed  CAS  Google Scholar 

  • Merrill AH (1991) Cell regulation by sphingosine and more complex sphingolipids. J Bioenerg Biomembr 23: 83–104

    PubMed  CAS  Google Scholar 

  • Miller-Prodraza H, Fishman PH (1984) Effect of drugs and temperature on biosynthesis and transport of glycosphingolipids in cultured neurotumor cells. Biochim Biophys Acta 804: 44–51

    Article  PubMed  CAS  Google Scholar 

  • Moser HW, Moser AB, Chen WW, Schräm AW (1989) Ceramidase deficiency: Farber lipogranulomatosis. In: The Metabolic Basis of Inherited Disease (Eds: Scriver CR, Beaudet AL, Sly WS, Valle D) McGraw-Hill, New York, 6th Ed, Vol II: 1645–1654

    Google Scholar 

  • Nakano T, Sandhoff K, Stümper J, Christomanou H, Suzuki K (1989) Structure of full-length cDNA coding for sulfatide activator, a co-ß-glucosidase and two other homologous proteins: Two alternate forms of the sulfatide activator. J Biochem (Tokyo) 105: 152–154

    CAS  Google Scholar 

  • Okazaki T, Bell RM, Hannun YA (1989) Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. J Biol Chem 264: 19076–19080

    PubMed  CAS  Google Scholar 

  • Olivera A, Spiegel S (1992) Ganglioside GM1 and sphingolipid breakdown products in cell proliferation and signal transduction pathways. Glycoconjugate J 9: 110–117

    CAS  Google Scholar 

  • Pacuszka T, Duffard RO, Nishimura RN, Brady RO, Fishman PH (1978) Biosynthesis of bovine thyroid gangliosides. J Biol Chem 253: 5839–5846

    PubMed  CAS  Google Scholar 

  • Patton JL, Srinivasan B, Dickson RC, Lester RL (1992) Phenotypes of sphingolipid-dependent strains of saccharomyces cerevisiae. J Bacteriology 174: 7180–7184

    CAS  Google Scholar 

  • Pohlentz G, Klein D, Schwarzmann G, Schmitz D, Sandhoff K (1988) Both GA2, GM2, and GD2 synthases and GM1b, GD1a, and GT1b synthases are single enzymes in Golgi vesicles from rat liver. Proc Natl Acad Sci USA 85: 7044–7048

    Article  PubMed  CAS  Google Scholar 

  • Pohlentz G, Schlemm S, Egge H (1992) 1-Deoxy-1-phosphatidylethanolamino-lactitol-type neoglycolipids serve as acceptors for sialyltransferases from rat liver Golgi vesicles. Eur J Biochem 203; 387–392

    Article  PubMed  CAS  Google Scholar 

  • Rother J, van Echten G, Schwarzmann G, Sandhoff K (1992) Biosynthesis of sphingolipids: dihydroceramide and not sphinganine is desaturated by cultured cells. Biochem Biophys Res Commun 189: 14–20

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Saito M, Rosenberg A (1984) Action of monensin, a monovalent cationophore, on cultured human fibroblasts: evidence that it induces high cellular accumulation of glucosyl-and lactosylceramide (gluco- and lactocerbroside). Biochemistry 23: 1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff K, Conzelmann E, Neufeld EF, Kaback MM, Suzuki K (1989) The GM2 gangliosidosis. In: The Methabolic Basis of Inherited Disease (Eds: Scriver CR, Beaudet AL, Sly WS, Valle D) McGraw-Hill, New York, 6th Ed, Vol II: 1808–1839

    Google Scholar 

  • Sandhoff K, van Echten G (1993) Ganglioside metabolism. Topology and regulation. Adv Lipid Res 26: 119–142

    CAS  Google Scholar 

  • Sandhoff K, Klein A (1994) Intracellular trafficking of glycosphingolipids: role of sphingolipid activator proteins in the topology of endocytosis and lysosomal digestion. FEBS Lett: in press

    Google Scholar 

  • Schwarzmann G, Sandhoff K (1990) Metabolism and intracellular transport of glycosphingolipids. Biochemistry 29: 10865–10871

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S (1993) Sphingosin and sphingosin 1-phosphate in cellular proliferation: relationship with protein kinase C and phosphatidic acid. J Lip Mediators 8: 169–175

    CAS  Google Scholar 

  • Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Tran D, Carpentier J-L, Sawano I, Gorden P, Orci L (1987) Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc Natl Acad Sci USA 84: 7957–7961

    Article  PubMed  CAS  Google Scholar 

  • Trinchera M, Ghidoni R (1989) The glycosphingolipid sialyltransferases are localized in different sub-Golgi compartments in rat liver. J Biol Chem 264: 15766–15769

    PubMed  CAS  Google Scholar 

  • Trinchera M, Pirovano B, Ghidoni R (1990) Sub-Golgi distribution in rat liver of CMP-NeuAc:GM3-and CMP-NeuAc:GT1b α2→8 sialyltransferases and comparison with the distribution of the other glycosyltransferase activities involved in ganglioside biosynthesis. J Biol Chem 265: 18242–18247

    PubMed  CAS  Google Scholar 

  • Trinchera M, Fabbri M, Ghidoni R (1991) Topography of glycosyltransferases involved in the initial glycosylations of gangliosides. J Biol Chem 266: 20907–20912

    PubMed  CAS  Google Scholar 

  • van Echten G, Sandhoff K (1989) Modulation of ganglioside biosynthesis in primary cultured neurons. J Neurochem 52: 207–214

    Article  PubMed  Google Scholar 

  • van Echten G, Iber H, Stotz H, Takatsuki A, Sandhoff K (1990) Uncoupling of ganglioside biosynthesis by brefeldin A. Eur J Cell Biol 51: 135–139

    PubMed  Google Scholar 

  • van Echten G, Sandhoff K (1993) Ganglioside metabolism. Enzymology, topology and regulation. J Biol Chem 268: 5341–5344

    PubMed  Google Scholar 

  • Young WW Jr, Lutz MS, Mills SE, Lechler-Osborn S (1990) Use of brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase is trans to the BFA block. Proc Natl Acad Sci USA 87: 6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Yusuf HKM, Pohlentz G, Sandhoff K (1983) Tunicamycin inhibits ganglioside biosynthesis in rat liver Golgi apparatus by blocking sugar nucleotide transport across the membrane vesicles. Proc Natl Acad Sci USA 80: 7075–7079

    Article  PubMed  CAS  Google Scholar 

  • Zacharias C, van Echten-Deckert G, Plewe M, Schmidt RR, Sandhoff K (1994) A truncated epoxy-glucosylceramide uncouples glycosphingolipid biosynthesis by decreasing lactosylceramide synthase activity. J Biol Chem 269: 13313–13317

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sandhoff, K., van Echten-Deckert, G. (1995). Glycolipids of Cellular Surfaces: Topology of Metabolism, Function and Pathobiochemistry of Glycolipid Binding Proteins. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics