Skip to main content

Viral Membrane Proteins as Tools to Study Protein Folding, Assembly, and Transport

  • Conference paper
Trafficking of Intracellular Membranes:

Part of the book series: NATO ASI Series ((ASIH,volume 91))

  • 96 Accesses

Abstract

The endoplasmic reticulum (ER) maintains a highly specialized environment that supports rapid and efficient protein folding and assembly. Viral membrane proteins have been used as tools to understand these processes. In this paper, we will review commonly used techniques that may be employed to monitor protein folding and assembly. Such approaches can be used to characterize folding factors in the ER as well as to develop a more complete understanding of viral membrane protein biosynthesis. Such information is required to fully evaluate the effects of mutations on viral membrane protein structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, E., Girones, N., and Davis, R. J. (1989). Intermolecular disulfide bonds are not required for the expression of the dimeric state and functional activity of the transferrin receptor. EMBO J. 8, 31–40.

    Google Scholar 

  • Anfinsen, C. (1986). Classical protein chemistry in a world of slicing and splicing. In “Protein engineering. Applications in science, medicine, and industry” (M. Inouye, and R. Sarma, Eds.), pp. 3–13. Academic, Orlando, Fla.

    Google Scholar 

  • Bergeron, J. J. M., Brenner, M. B., Thomas, D. Y., and Williams, D. B. (1994). Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem. Sci. 19, 124–128.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, L. W., and Kuehl, W. M. (1979). Formation of an intrachain disulfide bond on nascent immunoglobulin light chains. J. Biol. Chem. 254, 8869–8876.

    PubMed  CAS  Google Scholar 

  • Blond-Elguindi, S., Cwirla, S. E., Dower, W. J., Lipshutz, R. J., Sprang, S. R., Sambrook, J. F., and Gething, M. J. (1993). Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75, 717–718.

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino, J. S. (1992). Biosynthetic labeling of proteins. In “Current Protocols in Molecular Biology” (F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Scidman, J. A. Smith, and K. Struhl, Eds.), pp. 10. 18.1–10.18.9. Greene Publishing Assoc., Inc., New York.

    Google Scholar 

  • Boulay, F., Doms, R. W., Webster, R. G., and Helenius, A. (1988). Posttranslational oligomerization and cooperative acid activation of mixed influenza hemagglutinin trimers. J. Cell Biol. 106, 629–639.

    Article  PubMed  CAS  Google Scholar 

  • Braakman, I., Helenius, J., and Helenius, A. (1992a). Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11, 1717–1722.

    PubMed  CAS  Google Scholar 

  • Braakman, I., Helenius, J., and Helenius, A. (1992b). Role of ATP and disulfide bonds during protein folding in the endoplasmic reticulum. Nature 356, 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Braakman, I., Hoover-Litty, H., Wagner, K. R., and Helenius, A. (1991). Folding of influenza hemagglutinin in the endoplasmic reticulum. J. Cell Biol. 114, 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, C. S., Doms, R. W., Bolzau, E. M., Webster, R. G., and Helenius, A. (1986). Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J. Cell Biol. 103, 1179–1191.

    Article  PubMed  CAS  Google Scholar 

  • deSilva, A., Braakman, I., and Heleniu s, A. (1993). Post-translational folding of VSV G protein in the endoplasmic reticulum: Involvement of noncovalent and covalent complexes. J. Cell Biol. 120, 647–655.

    Article  CAS  Google Scholar 

  • Doms, R. W. (1990). Oligomerization and protein transport. Meth. Enzymol. 191, 841–854.

    Article  PubMed  CAS  Google Scholar 

  • Doms, R. W. (1993). Protein conformational changes in virus-cell fusion. Methods Enzymol. 221, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Doms, R. W., and Helenius, A. (1986). Quaternary structure of the influenza virus hemagglutinin after acid treatment. J. Virol. 60, 833–839.

    PubMed  CAS  Google Scholar 

  • Doms, R. W., Helenius, A., and Balch, W. (1987). Role for ATP in the assembly and transport of VSV G protein trimers. J. Cell Biol. 105, 1957–1969.

    Article  PubMed  CAS  Google Scholar 

  • Doms, R. W., Lamb, R., Rose, J. K., and Helenius, A. (1993). Folding and assembly of viral membrane proteins. Virology 193, 545–562.

    Article  PubMed  CAS  Google Scholar 

  • Doms, R. W., Ruusala, A., Machamer, C., Helenius, J., Helenius, A., and Rose, J. K. (1988). Differential effects of mutations in three domains on folding, trimerization and intracellular transport of VSV G protein trimers. J. Cell Biol. 107, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Earl, P. L., Doms, R. W., and Moss, B. (1990). Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 87, 648–652.

    Article  PubMed  CAS  Google Scholar 

  • Earl, P. L., Moss, B., and Doms, R. W. (1991). Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J. Virol. 65, 2047–2055.

    PubMed  CAS  Google Scholar 

  • Einfeld, D., and Hunter, E. (1988). Oligomeric structure of a prototype retrovirus glycoprotein. Proc. Natl Acad. Sci. USA 85, 8688–8692.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, P., Henneberry, J., Wilson, I., Sambrook, J., and Gething, M.-J. (1988). Addition of carbohydrate side chains at novel sites on influenza hemagglutinin can modulate the folding, transport, and activity of the molecule. J. Cell Biol. 107, 2059–2073.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, P. J., Henneberry, J. M., Sambrook, J. F., and Gething, M.-J. H. (1992). Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus. J. Virol. 66, 7136–7145.

    PubMed  CAS  Google Scholar 

  • Garten, W., Will, C., Buckard, K., Kuroda, K., Ortmann, D., Munk, K., Scholtissek, C., Schnittler, H., Drenckhahn, D., and Klenk, H.-D. (1992). Structure and assembly of hemagglutinin mutants of fowl plaque virus with impaired surface transport. J. Virol. 66, 1495–1505.

    PubMed  CAS  Google Scholar 

  • Gething, M.-J., McCammon, K., and Sambrook, J. (1986). Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46, 939–950.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, R., Schlesinger, S., and Kornfeld, S. (1979). The nonglycosylated glyeoprotein of vesicular stomatitis virus is temperature sensitive and undegoes intracellular aggregation at elevated temperatures. J. Biol. Chem. 254, 3600–3607.

    PubMed  CAS  Google Scholar 

  • Guan, J.-L., Machamer, C. E., and Rose, J. K. (1985). Glycosylation allows cell-surface transport of an anchored secretory protein. Cell 42, 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, C., and Helenius, A. (1993). A chaperone with a sweet tooth. Curr. Biol. 3, 884–886.

    Article  PubMed  CAS  Google Scholar 

  • Holsinger, L. J., and Lamb, R. A. (1991). Influenza vims M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 183, 32–43.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, C., Sinskey, A. J., and Lodish, H. F. (1992). Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257, 1496–1502.

    Article  PubMed  CAS  Google Scholar 

  • Long, D., Wilcox, W. C., Abrams, W. R., Cohen, G. H., and Eisenberg, R. J. (1992). The disulfide bond structure of glycoprotein D of Herpes simplex virus types 1 and 3 J. Virol. 66, 6668–6685.

    CAS  Google Scholar 

  • Machamer, C. E., Doms, R. W., Bole, D. G., Helenius, A., and Rose, J. K. (1990). Heavy chain binding protein recognizes incompletely disulfide-bonded forms of vesicular stomatitis virus G protein. J. Biol. Chem. 265, 6879–6883.

    PubMed  CAS  Google Scholar 

  • Machamer, C. E., Florkiewicz, R. Z., and Rose, J. K. (1985). A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Mol. Cell Biol. 5, 3074–3083.

    PubMed  CAS  Google Scholar 

  • Machamer, C. E., and Rose, J. K. (1988a). Influence of new glycosylation sites on expression of the vesicular stomatitis virus G protein at the plasma membrane. J. Biol. Chem. 263, 5948–5954.

    PubMed  CAS  Google Scholar 

  • Machamer, C. E., and Rose, J. K. (1988b). Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonds. J. Biol. Chem. 263, 5955–5960.

    PubMed  CAS  Google Scholar 

  • McEwen, C. R. (1967). Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal. Biochem. 20, 114–149.

    Article  PubMed  CAS  Google Scholar 

  • Naruse, H., Scholtissek, C., and Klenk, H.-D. (1986). Temperature-sensitive mutants of fowl plague virus defective in the intracellular transport of the hemagglutinin. Virus Res. 5, 293–305.

    Article  PubMed  CAS  Google Scholar 

  • Ng, D. T. W., Hiebert, S. W., and Lamb, R. A. (1990). Different roles of individual N-linked oligosaccharide chains in folding, assembly, and transport of the simian virus 5 hemagglutinin-neuraminidase. Molec. Cell Biol. 10, 1989–2001.

    PubMed  CAS  Google Scholar 

  • Persson, R., and Pettersson, R. F. (1991). Formation and intracellular transport of a heterodimeric viral spike protein complex. J. Cell Biol. 112, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Peters, T., and Davidson, L. K. (1982). The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. J. Biol. Chem. 257, 8847–8853.

    PubMed  CAS  Google Scholar 

  • Pinter, A., Honnen, W. J., Tilley, S. A., Bona, C., Zaghouani, H., Gorny, M. K., and Zolla-Pazner, S. (1989). Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J. Virol. 63, 2674–2679.

    PubMed  CAS  Google Scholar 

  • Pinto, L. H., Holsinger, L. J., and Lamb, R. A. (1992). Influenza virus M2 protein has ion channel activity. Cell 69, 517–528.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, C., Garten, W., and Klenk, H.-D. (1993). The role of conserved glycosylation in the maturation and transport of the influenza hemagglutinin. J. Virol. 67, 3048–3060.

    PubMed  CAS  Google Scholar 

  • Schuy, W., Will, C., Kuroda, K., Scholtissek, C., Garten, W., and Klenk, H.-D. (1986). Mutations blocking the transport of the influenza virus hemagglutinin between the rough endoplasmic reticulum and the Golgi apparatus. EMBO J. 5, 2831–2836.

    PubMed  CAS  Google Scholar 

  • Segal, M. S., Bye, J. M., Sambrook, J. F., and Gething, M.-J. H. (1992). Disulfide bond formation during the folding of influenza virus hemagglutinin. J. Cell Biol. 118, 227–244.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, W. C., Long, D., Sodora, D. L., Eisenberg, R. J., and Cohen, G. H. (1988). The contribution of cysteine residues to antigenicity and extent of processing of herpes simplex virus type 1 glycoprotein D. J. Virol. 62, 1941–1947.

    PubMed  CAS  Google Scholar 

  • Wilson-Rawls, J., Deutscher, S. L., and Wold, W. S. M. (1994). The signal-anchor domain of adenovirus E3-6.7K, a type DI integral membrane protein, can direct adenovirus E3–gp19K, a type I integral membrane protein, into the membrane of the endoplasmic reticulum. Virology 201, 66–76.

    Article  PubMed  CAS  Google Scholar 

  • Yewdell, J. W., Yellen, A., and Bächi, T. (1988). Monoclonal antibodies localize events in the folding, assembly, and intracellular transport of the influenza hemagglutinin glycoprotein. Cell 52, 843–852.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doms, R.W., Abedon, S.T., Richardson, T.M. (1995). Viral Membrane Proteins as Tools to Study Protein Folding, Assembly, and Transport. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics