Skip to main content
  • 257 Accesses

Abstract

In this section I introduce the angular momentum operators and their commutation relations (CR). Later on we will find the eigenfunctions and verify the eigenvalues for some examples. Angular momentum plays an important role in QM. In classical mechanics the angular momentum vector 1 = r × p of a point particle moving in a central potential V(r) is conserved, which implies that the motion is confined to a plane. In QM the angular momentum operator is obtained by application of the usual quantization rule (cf. Sect. 1.1). The Heisenberg uncertainty principle ΔxΔpħ makes it impossible to know precisely all three Cartesian components of angular momentum simultaneously. On the basis of the time evolution equation and the commutation relations between the Hamiltonian and the operators for the square of angular momentum and its components it is possible to show that the conservation law carries over into the statement that the magnitude and one projection is conserved and can be determined exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horbatsch, M. (1995). Problems in 3D. In: Quantum Mechanics Using Maple®. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79538-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79538-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79540-4

  • Online ISBN: 978-3-642-79538-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics