Cycling and Budgets of Acidity and Nutrients in Norway Spruce Stands in Northeastern France and the Erzgebirge (Czech Republic)

  • E. Dambrine
  • M. Bonneau
  • J. Ranger
  • A. D. Mohamed
  • C. Nys
  • F. Gras
Conference paper

Abstract

In order to analyse the mechanisms by which acid deposition is acting in soils, and its effects on soil chemistry and stand nutrition, a set of field studies were initiated or extended in coniferous stands in the Vosges and the Ardennes. Sites were chosen according to several aims. First of all, because of the occurrence of forest decline, declining coniferous stands with Mg deficiencies were selected. As Mg uptake is age-dependent, we compared a young and a mature stand in the same location. We assessed the relative importance of site quality for a given deposition level by comparing rich and poor sites. Finally, the influence of deposition level was observed by using the highly polluted sites in the Ardennes as well as in Northern Bohemia as a comparison. The following results summarize the data obtained at these sites.

Keywords

Biomass Dust Titration Acidity Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthelin J, Bonne M, Belgy G, Wedraogo F (1985) A major role for nitrification in the weathering of minerals in brown acid soils. J Geomicrobiol 4: 175–190CrossRefGoogle Scholar
  2. Bonneau M (1987) Effets de la pollution acide sur le sol. In: Les recherches en France sur le dépérissement des forêts. Programme Deforpa, 1er rapport. Engref, Nancy, pp 64–70.Google Scholar
  3. Bonneau M (1991) Effects of atmospheric pollution via the soil. In: G Landmann (ed) French research into forest decline. Deforpa Programme, 2nd report. Engref, Nancy, f pp 87–100Google Scholar
  4. Bonneau M, Nys C (1993) A nitrogen cycle model for calculating the reduction of N input necessary to reduce soil acidification and nitrate leaching and the consequences of this for wood production. Water Air Soil Pollut 69:1–20CrossRefGoogle Scholar
  5. Boudot JP, Becquer T, Merlet D, Rouiller J, Ranger J, Dambrine E, Mohamed AD (1995) Potential role of aluminium toxicity in nutrient deficiencies as related to forest decline: an assessment of soil solution data from the Vosges mountains. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, this vol.Google Scholar
  6. Bourrié G, Grimaldi C, Régeard A (1989) Monomeric versus mixed monomeric-polyme-ric models for aqueous alumium species: Constraints from low temperature natural waters in equilibrium with gibbsite under temperate and tropical climate. Chem Geol 76:403–417CrossRefGoogle Scholar
  7. Bredemeier M, Matzner E, Ulrich B (1990) Internal and external proton load to forest soils in northern Germany. J Environ Qual 19: 469–477CrossRefGoogle Scholar
  8. Brunelot G, Adrian P, Rouiller J, Guillet b, Andreux F (1989) Determination of dissociable acid groups of organic compounds extracted from soils using automated potentiometric titration. Chemosphere 19:1413–1419CrossRefGoogle Scholar
  9. Christophersen N, Neal C, Vogt R, Esser JM, Andersen S (1990) Aluminium mobilisation in soil and stream waters at three Norwegian catchments with different acid deposition and site characteristics. Sci Total Environ 96:175–188CrossRefGoogle Scholar
  10. Cosby BJ, Hornberger GM, Galloway JN, Wright RF (1985) Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and stream water chemistry. Water Resour Res 21:51–63CrossRefGoogle Scholar
  11. Dambrine E, Prévosto B (1989) Flux des éléments minéraux dans un écosystème forestier d’altitude soumis à la pollution atmosphérique, relation avec le dépérissement. In: Journées de Travail Deforpa, Nancy-Paris, février-mars 1989. INRA, Nancy, pp 8.2.1–8.2.42Google Scholar
  12. Dambrine E, Le Goater S, Ranger J (1991) Croissance et nutrition minérale d’un peuplement d’épicéa sur sol pauvre: II Prélèvement racinaire et translocation d’éléments minéraux au cours de la croissance. Acta Oecol 12(6):791–808Google Scholar
  13. Dambrine E, Ranger J, Pollier B, Bonneau M, Granier A, Lu P, Probst A, Viville D, Biron P, Garbaye J, Devêvre O (1992) Influence of various stresses on the Ca and Mg nutrition of a spruce stand developed on acid soil. In: Teller A, Mathy P, Jeffers JNR (eds) Response of Forest Ecosystems to Environmental Changes. Elsevier, London New York, pp 465–472Google Scholar
  14. Dambrine E, Kinkor V, Jehlicka J, Gelhaye D (1993) Fluxes of dissolved elements through a forest ecosystem submitted to extremely high atmospheric deposition inputs. Ann Sci For 50:147–157CrossRefGoogle Scholar
  15. Dambrine E, Ulrich E, Cénac N, Durand P, Gauquelin T, Mirabel P, Nys C, Probst A, Ranger J, Zéphoris M (1995a) Atmospheric deposition in France and possible relation with forest decline. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, this vol.Google Scholar
  16. Dambrine E, Sverdrup H, Warfvinge P (1995b) Atmospheric deposition, forest management and soil nutrient availability: a modelling exercise. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, this vol.Google Scholar
  17. Discours D (1991) Comparaison de deux approches méthodologiques: la lysimétrie et les sachets de résine introduits in situ pour l’étude des solutions du sols. Rapport IUT, INRA-Nancy, p 45Google Scholar
  18. Driscoll CT (1984) A procedure for the fractionation of aqueous aluminum in dilute acidic waters. Intern J Environ Anal Chem 16:267–283CrossRefGoogle Scholar
  19. Eriksson E (1988) Retention and release of sulphate in soils. In: Nilsson J, Grennfelt P (eds) Critical loads for sulphur and nitrogen. Miljфrapport 1988:15. Nordic Council of Ministers, Copenhagen, pp 151–184Google Scholar
  20. Feger KH, Brahmer G, Zöttl H (1990) An integrated watershed/plot-scale study of element cycling in spruce ecosystems of the Black Forest. Water Air Soil Pollut 54:545–560Google Scholar
  21. Feger (1992) Importance of land-use history for nutrient cycling in central European forests. In: Teller A, Mathy P, Jeffers JNR (eds) Response of forest ecosystems to environmental changes. Elsevier, London New York, pp 473–480Google Scholar
  22. Fédérer CA, Hornbeck JW, Tritton LM, Martin CW, Pierce RS, Smith CT (1989) Long-term depletion of Ca and other nutrients in eastern U.S. forests. Environ Manage 13:593–601Google Scholar
  23. Glatzel G (1990) The nitrogen status of Austrian forest ecosystems as influenced by atmospheric deposition, biomass harvesting and lateral organomass exchange. Plant Soil 128:67–74CrossRefGoogle Scholar
  24. Gras F, Boudot JP, Becquer T, Merlet D, Rouiller J (1989) Acidification et libération de l’aluminium dans un sol forestier vosgien: rôle de la nitrification et des apports atmosphériques de soufre. In: Journées de Travail Deforpa, Nancy-Paris, février-mars 1989. INRA, Nancy, pp 8.4.1–8.4.18Google Scholar
  25. Gobran GR, Agren GI (1989) Significance of changes in Kc values for Ca-Al exchange and its effects on soil and water acidification predictions. Ecol Modelling 44:165–175CrossRefGoogle Scholar
  26. Grimaldi C (1981) Acquisition de la composition chimique de la solution du sol en fonction des horizons pédologiques. PhD Thesis, Univ Rennes I, p 171Google Scholar
  27. Gundersen P, Rasmussen L (1988) Nitrification, acidification and aluminium release in forest soils. In: Nilsson J, Grenfelt P (eds) Critical loads for sulphur and nitrogen. Miljфrapport 1988:15. Nordic Council of Ministers, Copenhagen, pp 225–268Google Scholar
  28. Hauhs M (1989) Lange Bramke: An ecosystem study of a forested catchment. In: D.C. Adriano, M. Havas (eds), Acidic Precipitation. Volume 1: Case Studies. Springer, New York, pp 275–305CrossRefGoogle Scholar
  29. Hildebrand EE (1991) The spatial heterogeneity of chemical properties in acid forest soils and its importance for tree nutrition. Water Air Soil Pollut 54:183–191CrossRefGoogle Scholar
  30. Jehlicka J, Rouiller J, Guillet B, Dambrine E (1992) The contribution of organic compounds to the acidity of soil solutions (Aubure, Vosges mountains). In: Senesi N, Miano T (eds) Humic substances in the global environment and implications in human health. Proc 6th meeting Internat Humic Substances Soc, Bari, p 3Google Scholar
  31. Johnson DW, Cresser MS, Nilsson SI, Turner J, Ulrich B, Binkley D, Cole DW (1991) Soil changes in forest ecosystems: Evidence for and probable causes. In: Last FT, Watling R (eds) Acid Deposition. Its nature and its impacts. Proc Royal Soc Edinburgh 97B:81–116Google Scholar
  32. Kinkor W (1988) Influence of acid rain on chemical properties of soils in the Bohemian massif (Czechoslovakia). Internal report Agric. Univ Wageningen, The Netherland, p35Google Scholar
  33. Krug EC, Fink CR (1983) Acid rain on acid soil: A new perspective. Science 221:520–525CrossRefGoogle Scholar
  34. Landmann G (1989) Evolution sur 20 ans du complexe absorbant et de l’alimentation minérale d’un peuplement adulte de sapin pectiné dans un site d’altitude du massif vosgien. In: Journées de Travail Deforpa, Nancy-Paris, février-mars 1989. INRA, Nancy, vol. 4, pp 10.3.1–10.3.6Google Scholar
  35. Landmann G, Bonneau M, Bouhot-Delduc L, Fromard F, Chéret V, Dagnac J, Souchier B (1995) Crown damage in Norway spruce and silver fir: relation to nutritional status and soil chemical characteristics in the French Mountains. In: Landmann G, Bonneau M (eds) Forest decline and air pollution effects in the French mountains. Springer, Berlin Heidelberg New York, this vol.Google Scholar
  36. Lefèvre Y (1988) Les sols du bassin versant d’Aubure: caractérisation et facteurs de répartition. Ann Sci For 45:417–422CrossRefGoogle Scholar
  37. Le Goaster S, Dambrine E, Ranger J (1991) Mineral supply of healthy and declining trees of a young spruce stand. Water Air Soil Pollut 54:269–280Google Scholar
  38. Le Goaster S, Dambrine E, Ranger J (1991) Croissance et nutrition d’un peuplement d’épicéa sur sol pauvre: I Evolution de la biomasse et dynamique d’incorporation d’éléments minéraux. Acta Oecol 12(6):771–789Google Scholar
  39. Liu S, Munson R, Johnson D, Gherini S, Summers K, Hudson R, Wilkinson K, Pitelka L (1992) Application of a nutrient cycling model (NuCM) to a northern mixed hardwood and a southern coniferous forest. Tree Physiol 9:173–184Google Scholar
  40. Matzner E (1983) Balance of element fluxes within different ecosystems impacted by acid rain. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, pp 147–155CrossRefGoogle Scholar
  41. Matzner E (1992) Factors controlling Al-activity in soil solutions in an acid forest soil of the German Soiling area. Z Pflanzenernähr Bodenk 155:333–338CrossRefGoogle Scholar
  42. Mohamed AD (1992) Fonctionnement bio géochimique de deux pessières sur sol acide. Incidence de la fertilisation et relation avec le dépérissement. PhD Thesis, Univ Nancy I, p 220Google Scholar
  43. Moldan B, Dvorakova M (1987) Atmospheric deposition into small drainage basins studied by Geographical Survey. In: Moldan B, Paces T (eds) Extended abstracts, GEOMON congress, May 1987, Prag, p 3Google Scholar
  44. Nilsson J, Grennfelt P (1988) Critical loads for sulphur and nitrogen. Miljфrapport 1988:97. Nordic Council of Ministers, Copenhagen, p 418Google Scholar
  45. Nys C (1987) Fonctionnement du sol d’un écosystème forestier, conséquences des enré-sinements. PhD Thesis, Univ Nancy I, p 207Google Scholar
  46. Nys C, Ranger J (1988) Influence d’une substitution d’espèce sur le fonctionnement biogéochimique de l’écosystème forêt. L’exemple du cycle du soufre. Ann Sci For 45:169–188CrossRefGoogle Scholar
  47. Nys C, Ranger D, Ranger J (1983) Etude comparative de deux écosystèmes feuillus et résineux des Ardennes primaires. I Minéralomasse et cycle biologique d’une pessière de 50 ans. Ann Sci For 40:41–66CrossRefGoogle Scholar
  48. Oren R, Schulze ED (1989) Nutritional disharmony and forest decline: A conceptual model. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution: A study of spruce (Picea abies) on acid soils. Ecol Studies 77, Springer, Berlin, pp 425–443CrossRefGoogle Scholar
  49. Probst A, Dambrine E, Viville D, Fritz B (1990) Influence of acid atmospheric inputs on surface water chemistry and mineral fluxes in a declining spruce stand within a small granitic catchment (Vosges Massif, France). J Hydrol 116:101–124CrossRefGoogle Scholar
  50. Probst A, Probst JL, Massabuau JC, Fritz B (1995) Surface water acidification in the Vosges mountains: relation to bedrock and vegetation cover. In: Landmann G, Bonneau M (eds) Forest decline and atmospheric deposition effects in the French mountains. Springer, Berlin Heidelberg New York, this vol.Google Scholar
  51. Ranger J, Cuirin G, Bouchon J, Colin-Belgrand M, Gelhaye D, Mohamed D, (1992) Biomasse et minéralomasse d’une plantation d’épicéa commun Picea abies L. Karst) de forte production dans les Vosges. Ann Sci For 49:651–668CrossRefGoogle Scholar
  52. Reuss JO, Johnson DW 1986. Acid deposition and the acidification of soils and waters. Ecol Studies 59, Springer, Berlin, p 119Google Scholar
  53. Richter DD, Johnson DW, Dai KH (1992) Cation exchange and Al mobilization in soils. In: Johnson DW, Lindberg SE (eds) Atmospheric deposition and forest nutrient cycling. Ecol Studies 91, Springer, New York, pp 341–357CrossRefGoogle Scholar
  54. Stone A, Semb HM (1989) Mathematical models and their role in understanding water acidification: an evaluation using Birkenes model as an example. Ambio 18(3): 192–199Google Scholar
  55. Sverdrup H (1990) The kinetics of base cation release due to chemical weathering. Thesis, Lund Univ Press, LundGoogle Scholar
  56. Sverdrup H, Warfvinge P (1988a) Assessment of critical loads of acid deposition on forest soils. In: Nilsson J, Grennfelt P (eds) Critical loads for sulphur and nitrogen. Miljørapport 1988:15, Nordic Council of Ministers, Copenhagen, pp 131–1149Google Scholar
  57. Sverdrup H, Warfvinge P (1988b) Weathering of primary minerals in the natural soil environment in relation to a chemical weathering model. Water Air Soil Pollut 38:387–408Google Scholar
  58. Tamm CO, Hallbacken L (1988) Changes in soil acidity in two forest areas with different acid deposition: 1920s and 1980s. Ambio 17(1):56–61Google Scholar
  59. Ulrich B (1983a) Soil acidity and its relation to acid deposition. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, pp 127–146CrossRefGoogle Scholar
  60. Ulrich B (1983b) Interaction of forest canopies with atmospheric constituents: SO2, Alkali and earth alkali cations and chloride. In: B Ulrich, J Pankrath (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, pp 33–45CrossRefGoogle Scholar
  61. Ulrich B, Mayer R, Khana PK (1980) Chemical changes due to acid precipitation in a loess-derived soil in Central Europe. Soil Sci 130:193–199CrossRefGoogle Scholar
  62. Van Breemen N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307:599–604CrossRefGoogle Scholar
  63. Zöttl HW (1990) Remarks on the effects of nitrogen deposition to forest ecosystems. Plant and Soil 128:83–89.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. Dambrine
    • 1
  • M. Bonneau
    • 1
  • J. Ranger
    • 1
  • A. D. Mohamed
    • 1
  • C. Nys
    • 1
  • F. Gras
    • 2
  1. 1.Unité Microbiologie et Biogéochimie des Ecosystèmes ForestiersINRA—Centre de NancyChampenouxFrance
  2. 2.CNRS — Centre de Pédologie BiologiqueVandoeuvre-les-Nancy Cedex 05France

Personalised recommendations