Studies in Very-High Mach Number Hydrodynamics

  • J. Grun
  • C. K. Manka
  • B. H. Ripin
  • A. C. Buckingham
  • I. Kohlberg
Conference paper

Abstract

We present results of experiments on very-high Mach number (> 100) shocks and very-high Mach number and Reynolds number (> 100 × 106) turbulence, which are initiated with a powerful laser driver. In one experiment we examined laser-produced-shock solid-surface interactions and Mach stems and triple points, and also measured a new phenomenon termed a blast wave decursor. In a second experiment we found that shocks become unstable if they propagate through a gas which has a low adiabatic index and we measured the growth rate of the instability. In a third experiment we have shown that a high Mach number shock dramatically enhances the structure of a turbulent field through which it passes and that the shock itself is badly distorted. This result is unexpected since common wisdom has it that high Mach number shocks self-heal as they pass through a turbulent field.

Key word

Laser matter interaction Shock Turbulence Blast wave Shock instability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernstein IB, Book DL (1980) Astrophys. J. 240: 223CrossRefADSMathSciNetGoogle Scholar
  2. Buckingham AC, Grun J (1993) In: Numerical Methods in Laminar and Turbulent Flow, to be publishedGoogle Scholar
  3. Chevalier RA (1976) Astrophys. J. 207: 872CrossRefADSGoogle Scholar
  4. Cheng A (1979) Astrophys. J. 227: 955CrossRefADSGoogle Scholar
  5. Gaffet B (1984) Astron. Astrophys. 135: 94MATHADSMathSciNetGoogle Scholar
  6. Gaffet B (1984) Astrophys. J. 279: 419CrossRefADSGoogle Scholar
  7. Gerola H, Seiden P.E (1978) Astropys. J. 223: 129CrossRefADSGoogle Scholar
  8. Glasstone S, Dolan PJ (1977) The effects of Nuclear Weapons, ( United States Department of Defense and the Energy Research and Development Administration, Washington DC )CrossRefGoogle Scholar
  9. Glowacki WJ, Kuhl AL, Glaz 11M, Ferguson RE (1986) In: Bershader D, Hanson R (eds) Proc. 15th Intl. Symp. on Shock Waves and Shock Tubes, Stanford University Press, Stanford, p 187Google Scholar
  10. Krauss-Varban D, ibid.Google Scholar
  11. Grun J, Decoste R, Ripin Bh, Gardner J (1981) Appl. Phys. Lett. 39: 545CrossRefADSGoogle Scholar
  12. Grun J, Emery MH, Kacenjar S, Opal CB, McLean EA, Obenschain SP, Ripin BH, Schmitt A (1984) Phys. Rev. Lett. 53: 1352CrossRefADSGoogle Scholar
  13. Grun J, Stellingwerf B, Ripin BH (1986) Phys. Fluids 29: 3390CrossRefADSGoogle Scholar
  14. Grun J, Emery MH, Manka CK, Lee TN, McLean EA, Stamper J, Obenschain SP, Ripin BH (1987) Phys. Rev. Lett. 58: 2672CrossRefADSGoogle Scholar
  15. Grun J, Stamper J, Manka CK, Resnick J, Burris R, Ripin BH (1991) Appl. Phys. Lett. 59 (2): 246CrossRefADSGoogle Scholar
  16. Grun J, Stamper J, Manka C, Resnick J, Burris R, Crawford J (1977) Phys Rev. Lett. 66: 2738Google Scholar
  17. Isenberg PA (1977) Astrophys. J. 217: 597CrossRefADSGoogle Scholar
  18. Kinney GF, Graham KJ (1985) Explosive Shocks in Air, Springer-Verlag, New York Kohlberg I 1989) Kohlberg Associates Report KAINRL02–89Google Scholar
  19. 19.
    Low MM, Norman ML (1992) Nonlinear growth of dynamical overstabilities in blast waves. University of Illinois at Urbana-Champaign preprint 013Google Scholar
  20. Newman WI (1980) Astrophys. J. 236: 880CrossRefADSGoogle Scholar
  21. Ostriker JP, Cowie L L (1981) Astrophys. J. Letters 243: L127CrossRefADSGoogle Scholar
  22. Ripin BH, Ali AW, Griem HR, Grun J, Kacenjar ST, Manka CK, McLean EA, Obenschain SP, Stamper JA (1986) In: Hora H, Miley GH (eds) Laser Interactions and Related Plasma Phenomena, Vol. 7. Plenum, NYGoogle Scholar
  23. Ripin BH, Manka CK, Peyser TA, McLean EA, Stamper JA, Mostovych AN, Grun J, Kearney K, Crawford JR, Huba JD (1987) In: Laser and Particle Beams Vol. 8 Cambridge U. PressGoogle Scholar
  24. Ryu D, Vishniac ET (1971) Astrophys. J. 313: 820CrossRefADSGoogle Scholar
  25. Sachs PG (1944) The dependence of blast on ambient pressure and temperature. Aberdeen Proving Ground, Maryland, BRL Report No. 466Google Scholar
  26. Sedov LI (1959) Similarity and Dimensional Methods in Mechanics. Academic Press, New YorkMATHGoogle Scholar
  27. Stamper JA, Ripin BH, Peterkin RE, Stellingwerf RF (1988) Phys. Fluids 31: 3353CrossRefADSGoogle Scholar
  28. Trimble V (1988) Rev. of Modern Physics 60: 859CrossRefADSGoogle Scholar
  29. Vishniac ET (1983) Astrophys. J. 274: 152 (1983)CrossRefADSGoogle Scholar
  30. Vishniac ET, Ryu D (1989) Astrophys. J. 337: 917CrossRefADSGoogle Scholar
  31. Zel’dovich YaB, Raizer YuP (1966) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. Grun
    • 1
  • C. K. Manka
    • 1
  • B. H. Ripin
    • 1
  • A. C. Buckingham
    • 2
  • I. Kohlberg
    • 3
  1. 1.Naval Research LaboratoryUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Kohlberg Associates, Inc.AlexandriaUSA

Personalised recommendations