Numerical Modelling of Shock Wave Diffraction

  • R. Hillier
Conference paper

Abstract

Numerical results are presented for the problem of shock wave diffraction in air at a sharp ninety degrees edge, using a high resolution Godunov-type scheme. The computations produce flow separation at the edge, with subsequent roll-up of the shear layer into a vortex spiral. Details of the diffracted shock wave, the secondary rearward facing or ‘stagnation’ shock and the vortex agree well with available experimental data. It is also shown that two vortex shocks may form within the vortex spiral.

Key words

Shock diffraction Computational gas dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazhenova TV, Gvozdeva LG, Komarov VS, Sukhov BG, (1971) Diffraction of strong shock waves in a shock tube. In: Stollery JL, Gaydon AG, Owen PR (eds) Proc. 8th Intl. Shock Tube Symp. LondonGoogle Scholar
  2. Bazhenova TV, Gvozdeva LG, Komarov VS, Sukhov BG (1973) Investigation of a strong shock wave diffraction at convex corners. Izv. Akad. Nauk SSSR MZhG 4: 122–134Google Scholar
  3. Bazhenova TV, Gvozdeva LG, Zhilin YuV (1979). Change in shape of the diffracting shock wave at a convex corner. Acta Astronautica 6: 401–412CrossRefADSGoogle Scholar
  4. Bazhenova TV, Gvozdeva LG, Nettleton MA (1984) Unsteady interactions of shock waves. Prog. in Aerosp. Sci. 21: 249–331CrossRefADSGoogle Scholar
  5. Ben-Artzi M, Falcovitz J (1984) A second order Godunov-type scheme for compressible fluid dynamics. J. Comp. Phys. 55: 1–32CrossRefMATHADSMathSciNetGoogle Scholar
  6. Glass II (1967) Research frontiers at hypervelocities. CASI J. 13: 347–366Google Scholar
  7. Glaz HM, Colella P, Glass II, Deschambault RL (1985) A detailed numerical,graphical and experimental study of oblique shock wave reflections. LBL Rept. 20033Google Scholar
  8. Hillier R (1991) Computation of shock wave diffraction at a ninety degrees convex edge. Shock Waves 1: 89–98CrossRefMATHADSGoogle Scholar
  9. Hillier R, Netterfield M (1990) Computation of shock wave diffraction and unsteady shock-boundary layer interaction. In: Kim YM (ed) Proc. 17th Intl. Symp. on Shock Waves and Shock Tubes, AIP, pp 252–257Google Scholar
  10. Matsuo K, Aoki T, Kashimura H. (1990) Diffraction of a shock wave around a convex corner. In: Kim YM (ed) Proc. 17th Intl. Symp.on Shock Waves and Shock Tubes, AIP, pp 252–257Google Scholar
  11. Skews BW (1967a) The shape of a diffracting shock wave. J. Fluid Mech. 29: 297–304CrossRefADSGoogle Scholar
  12. Skews BW (1967b) The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29: 705–719CrossRefADSGoogle Scholar
  13. Takayama K, Inoue O (1991) Shock wave diffraction over a 90 degree sharp corner.Posters presented at the 18th ISSW Shock Waves 1: 301–312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • R. Hillier
    • 1
  1. 1.Department of AeronauticsImperial CollegeLondonUK

Personalised recommendations