Advertisement

Metals in Lakes: Field and Modeling Results on Remedial Strategies with a Focus on Mercury and Radiocesium

  • L. Håkanson
Chapter
Part of the Environmental Science book series (ESE)

Abstract

There are many chemical threats to the aquatic ecosystem today, e. g., eutrophication from nutrients, contamination from halogenated organics, radioisotopes and metals, and acidification. Pollutants reach lakes via different pathways: wet and dry atmospheric deposition on the catchment and the lake surface, direct emissions from, e. g., industries and urban areas and internal loading from contaminated sediments. The spread, retention and biouptake vary from substance to substance (Forstner and Miiller 1974; Forstner and Wittmann 1981; Salomons and Forstner 1984; Vernet 1991), but the fundamental principles and processes regulating the distribution and biouptake are more or less the same for all toxic substances, and could be modeled in the same manner by means of generic, massbalance models, but with different rates and model variables for different substances. For metals dissolved in the water or absorbed to very fine carrier particles, the distribution of these may be widespread and revealed as elevated concentrations in water, in suspended materials, in sediments and in biota over vast areas. However, elevated concentrations in abiotic compartments is one thing - biological uptake and increased ecological effects on the ecosystem level may be quite another (Hakanson 1984; Meili 1991a; Peters 1991). Thus, a fundamental question concerns the actual and potential ecological effects: How can one detect, describe and predict ecological effects at the ecosystem level?

Keywords

Lake Water Outflow Rate Swedish Lake Lake Fish Water Retention Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson P, Grahn P, Hörnström E, Nyberg P, Dahlquist K (1989) Liming and fertilization in lakes Rammsjön and Ämten, Örebro county 1980–1987. An attempt to reduce the Hg-concentration in fish (in Swedish). SNV Report 35874, 119 ppGoogle Scholar
  2. Andersson T, Forsgren G, Häkanson L, Malmgren L, Nilsson Ä (1990) Radioactive caesium in fish in Swedish lakes after Chernobyl (in Swedish). SSI Rapport 90–04, 41 ppGoogle Scholar
  3. Andersson T, Häkanson L, Kvarnäs H, Nilsson Ä (1991) Remedial measures against high levels of radioactive cesium in Swedish lake fish (in Swedish). SSI Rapport 91–07, 114 ppGoogle Scholar
  4. Bergman R, Danell K, Ericsson A, Grip H, Johansson L, Nelin P, Nylen T (1988) Uptake, re-distribution and transport of radionuclides in a forest ecosystem (in Swedish). FOArapport E 40040, Sept. 1988, SLU, UmeäGoogle Scholar
  5. Björnberg A, Häkanson L, Lundbergh K (1988) A theory on the mechanisms regulating the bioavailability of mercury in natural waters. Environmental Pollution, 48: 53 – 61CrossRefGoogle Scholar
  6. Boudou A, Ribeyre F (1990) Aquatic ecotoxicology: Fundamental concepts and methodologies. CRC Press, Boca RatonGoogle Scholar
  7. Broberg A, Andersson E (1989) Circulation of caesium in limnic ecosystems (in Swedish). Inst, of Limnology, Uppsala Univ, 30 ppGoogle Scholar
  8. Carlsson S (1978) A model for the turnover of 137Cs and potassium in pike (Esox Lucius), Health Phys, 35: 549 – 554CrossRefGoogle Scholar
  9. Fleishman DG (1963) Accumulation of artificial radionuclides in freshwater fish. In: Klechkovskii VM, Polikarpov GG, Aleksakhin RM (eds) Radioecology. John Wiley, New York, pp 347 – 370Google Scholar
  10. Förstner U, Müller G (1974) Schwermetalle in Flüssen und Seen. Springer, Berlin Heidelberg New York, 225 ppGoogle Scholar
  11. Förstner U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York, 486 ppGoogle Scholar
  12. Göthberg A (1983) Intensive fishing - a way to reduce the mercury level in fish. Ambio, 12: 259 – 261Google Scholar
  13. Hammar J, Notter M, Neumann G (1989) Caesium in char lakes (in Swedish). Report to SSI (project P 378.86 and P 378. 88 )Google Scholar
  14. Häkanson L (1980) The quantitative impact of pH, bioproduction and Hg-contamination on the Hg-content of fish (pike). Environmental Pollution, B, 1: 285 – 304Google Scholar
  15. Häkanson L (1984) Aquatic contamination and ecological risk. An attempt to a conceptual framework. Water Res, 18: 1107 – 1118CrossRefGoogle Scholar
  16. Häkanson L (1990) An operative system for environmental consequence analysis for aquatic ecosystems. - In: Baudo R, Giesy JP, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants, Lewis Publishers, Michigan, pp 365 – 390Google Scholar
  17. Häkanson L (1991) Ecometric and dynamic modelling - exemplified by caesium in lakes after Chernobyl. Springer, Berlin Heidelberg New York, 162 ppGoogle Scholar
  18. Häkanson L, Andersson P, Andersson T, Bengtsson Ä, Grahn P, Johansson J-Ä, Jönsson C-P, Kvarnäs H, Lindgren G, Nilsson A (1990a) Measures against high levels ofGoogle Scholar
  19. Häkanson L, Andersson T (1992) Remedial measures against radioactive caesium in Swedish lake fish after Chernobyl. Aquatic Sei, 54: 141 – 164CrossRefGoogle Scholar
  20. Häkanson L, Andersson T, Neumann G, Nilsson Ä, Notter M (1988) Cesium-137 in perch in lakes from northern Sweden after Chernobyl - present situation, relationships, trends. Swed. Env. Prot. Agency, Report 34 97, 136 ppGoogle Scholar
  21. Häkanson L, Borg H, Uhrberg R (1990b) Reliability of analyses of Hg, Fe, Ca, K, P, pH, alkalinity, conductivity, hardness and colour from lakes. Int Rev ges Hydrobiol, 75: 79–94Google Scholar
  22. Häkanson L, Peters RH (1995) Predictive limnology - methods for predictive modelling. SPB Academic Publishing, Amsterdam, 464 ppGoogle Scholar
  23. Jansson M, Hayman U, Forsberg C (1981) Acid lakes and “biological buffering” (in Swedish). Vatten, 37: 241 - 251Google Scholar
  24. Johnels AG, Westermark T, Berg W, Persson PI, Sjöstrand B (1967) Pike ( Esox lucius L.) and some other aquatic organisms in Sweden as indicators of mercury contamination in the environment. Oikos, 18: 323–333Google Scholar
  25. Lindqvist O, Johansson K, Aastrup M, Andersson A, Bringmark L, Hovsenius G, Häkanson L, Iverfeldt Ä, Meili M, Timm B (1991) Mercury in the Swedish environment. Water Air Soil Pollut, vol. 55, 261 ppCrossRefGoogle Scholar
  26. Meili M (1991a) In situ assessment of trophic levels and transfer rates in aquatic food webs using chronic (Hg) and pulsed (Chernobyl 137Cs) environmental contaminants. Verh. Int. Verein. Limnol, 24Google Scholar
  27. Meili M (1991b) Mercury in boreal forest lake ecosystems. Acta Univ. Upsaliensis 336. Thesis, Uppsala UnivGoogle Scholar
  28. Moberg L (ed)(1991) The Chernobyl fallout in Sweden. The Swed. Rad. Prot. Inst, Stockholm, 633 ppGoogle Scholar
  29. Monitor (1986) Acid and acidified waters (in Swedish). SNV, Solna, 180 ppGoogle Scholar
  30. Nilsson A, Andersson T, Häkanson L, Andersson A (1989) Mercury in lake fish–linkages to selenium and mercury in the mor layer and to historical emissions. SNV Report 3593, 117 ppGoogle Scholar
  31. Paulsson K, Lundbergh K (1989) The selenium method for treatment of lakes for elevated levels of mercury in fish. Sei Tot Env, 87 /88: 496 – 507Google Scholar
  32. Peters RH (1986) The role of prediction in limnology. Limnol Oceanogr, 31: 1143 – 1159CrossRefGoogle Scholar
  33. Peters RH (1991) A critique for ecology. Cambridge Univ. Press, Cambridge, 366 ppGoogle Scholar
  34. Rüse G, Björnstad HE, Oughton DH, Salbu B (1990) A study on radionuclide associations with soil components using sequential extraction procedure. J Radioanal Nucl Chem, 142: 531 – 538CrossRefGoogle Scholar
  35. Rudd JWM, Turner MA (1983) Suppression of mercury and selenium bioaccumulation by suspended and bottom sediments. Can J Fish Aquat Sei, 40: 2218 – 2227CrossRefGoogle Scholar
  36. Turner MA, Furutani A, Swick A, Townsend BE (1983) The English-Wabigoon river system: a synthesis of recent research with a view towards mercury amelioration. Can J Fish Aquat Sei, 40: 2206 – 2217CrossRefGoogle Scholar
  37. Salbu B, Björnstad HE, Brittain JE (1991) Fractionation of Cs-isotopes and 90–Sr in snow melt, runoff and lake water from contaminated area in Norway. J Radioanal Nucl ChemGoogle Scholar
  38. Salomons W, Förstner U (1984) Metals in the Hydrocycle. Springer, Berlin Heidelberg New York, 349 ppCrossRefGoogle Scholar
  39. Santschi PH, Bollhalder S, Zingg S, Luck A, Farrenkothen K (1990) The self-cleaning capacity of surface water after radioactive fallout. Evidence from European water after Chernobyl, 1986–1988. Environ Sei Technol, 24: 519 – 527CrossRefGoogle Scholar
  40. Vernet J-P (ed)(1991) Heavy metals in the environment. Elsevier, Amsterdam, 405 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • L. Håkanson

There are no affiliations available

Personalised recommendations