The Acid Lakes of Lignite Mining District of the former German Democratic Republic

  • M. Schultze
  • W. Geller
Part of the Environmental Science book series (ESE)


Large areas of central and eastern Europe have reserves of hard and brown coal. The map in Fig. 8.1 (following page) presents the according mining areas of Germany, Poland and the Czech Republic. The reserves of lignite in Germany with 56 x 109 tons of potential output correspond to 10% of the world reserves and 50% of the reserves of Europe (Mohlenbruch and Scholmerich 1992). There are two major lignite districts in the area of the former German Democratic Republic (G.D.R.): the central German district around the city of Leipzig and the Lusatian mining area in the surroundings of Cottbus, which both have been exploited since the 17th century. This exploitation culminated after World War II, when 90% of power generation in 1988 - the year of maximum output – was based on brown coal: globally the highest proportion of this kind of primary energy source (Couch 1992; Ei Bmann 1994). As a consequence, in the area of the former G.D.R., the per-capita emission of C02 from the total of primary energy sources was ranked second after the United States at 18.5 tons per year and per inhabitant (based on data from 1990); the respective per-capita emissions were 10.8 tons C02 for the area of the former West Germany (BMU 1994). The lignite output of 310 million tons was accompanied by 1353 million tons of overburden and by 1720 million m3 of groundwater which had to be removed in 1988 (Bilkenroth and Koziol 1990).


Brown Coal Sulfide Oxidation German Democratic Republic Acid Lake Main Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpers CN, Blowes DW (eds) (1994) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DCGoogle Scholar
  2. Benndorf J (1994) Sanierungsmaßnahmen in Binnengewässern: Auswirkungen auf die trophische Struktur. Limnologica 24: 121–135Google Scholar
  3. Bhatti TM, Bigham JM, Vuorinen A, Tuorinen OH (1994) Alteration of mica and feldspar associated with the microbiological oxidation of pyrrhotite and pyrite. In: Alpers CN,Google Scholar
  4. Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DC, pp 90–105Google Scholar
  5. Bilkenroth K-D, Koziol G (1990) Der Braunkohletagebau in der Deutschen Demokratischen Republik - Entwicklungsstand und Perspektiven. Braunkohle 3: 5–10Google Scholar
  6. Bismarck, F von (1993) Changes of German lignite mining: just the effects of reunification? In: OECD/IEA (ed) The clean and efficient use of coal and lignite: its role in energy, environment and life. Conf Proc, Hong Kong, pp 667–673Google Scholar
  7. Brocksen R W, Wisniewski J (eds) (1988) Restoration of aquatic and terrestrial systems. Special issue of Water, Air, and Soil Pollution, vol 41, 1–4Google Scholar
  8. Calderoni A, Mosello R, Ruggiu D (1992) Sixty years of limnology on Lago d’Orta: a case history of recovery from heavy pollution. Mem 1st Ital Idrobiol, 50: 201–223Google Scholar
  9. Colienne R H (1983) Photoreduction of iron in the epilimnion of acidic lakes. Limnol Oceanogr 28: 83–100CrossRefGoogle Scholar
  10. Couch, G R (1992) Low rank coal in eastern Europe: opportunities and constraints. In: OECD/IEA (ed) Clean and efficient use of coal: the new era for low-rank coal. Conf Proc, Budapest, pp 243–260Google Scholar
  11. Cravotta CA III (1994) Second iron-sulfate minerals as sources of sulfate and acidity: geochemical evolution of acidic ground water at a reclaimed surface coal mine inGoogle Scholar
  12. Pennsylvania. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DC, pp 345–364Google Scholar
  13. Eißmann L (1994) Leitfaden der Geologie des Präquartärs im Saale-Elbe-Gebiet. Altenbg. nat. wiss. Forsch. 7: 11–53Google Scholar
  14. Fischer R, Reißig H, Peukert D, Hummel J (1987) Untersuchungen zur Beeinflussung der Markasitverwitterung. Neue Bergbautechnik 17: 60–64Google Scholar
  15. Germain MD, Tasse N, Begeron M (1994) Limit to self-neutralization in acid mine tailings: the case of East Sullivan, Quebec, Canada. In: Alpers CN, Blowes DW (eds )Google Scholar
  16. Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DC, pp 365–379Google Scholar
  17. Harvey H H (1980) Widespread and diverse changes in the biota of North American lakes and rivers coincident with acidification. In: Drablos D and Tollan A (eds) Ecological impact of acid precipitation. Proc Int Conf, SNCF, OsloGoogle Scholar
  18. Henning D (1994) Bergbauliche Rekultivierung und Landschaftsgestaltung im Lausitzer Braunkohlerevier. Braunkohle 3: 4–8Google Scholar
  19. Mattheß G (1990) Die Beschaffenheit des Grundwassers, 2nd edn. Gebrüder Borntraeger, BerlinGoogle Scholar
  20. Möbs H, Maul C (1994) Sanierung der Braunkohlegebiete in Mitteldeutschland und in der Lausitz. Wasserwirtschaft Wassertechnik 3: 12–18Google Scholar
  21. Möhlenbruch N, Schölmerich U (1992) Landschaften nach der Auskohlung. Spektrum Wiss 04 /92: 105–119Google Scholar
  22. Olem H (1991) Liming acidic surface waters. Lewis Publ, Chelsea, MichiganGoogle Scholar
  23. Pätz H, Rascher J, Seifert A (1989) Kohle - ein Kapitel aus dem Tagebuch der Erde. 2. Aufl., Teubner Verlag, LeipzigGoogle Scholar
  24. Pietsch W (1979) Zur hydrochemischen Situation der Tagebauseen des Lausitzer Braunkohlen-Revieres. Arch Naturschutz Landschaftsforsch, Berlin, 19: 97–115Google Scholar
  25. Ptacek CJ, Blowes DW (1994) Influence of siderite on the pore-water chemistry of inactive mine-tailings impoundments. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DC, pp 172–189Google Scholar
  26. Steinberg C (1987) Gewässerversauerung. In: Wagner R (ed) Wasser-Kalender 1987. Erich Schmidt Verlag, Berlin, pp 139–161Google Scholar
  27. Steinberg C, Lenhart B (1986) Diskussionsbeiträge zur Geochemie der Gewässerversauerung. Deutsche gewässerkundliche Mitteilungen 30: 1–9Google Scholar
  28. Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. J. Wiley and Sons, New York Chichester Brisbane Toronto SingaporeGoogle Scholar
  29. Stumm W, Morgan JJ, Schnoor JL (1983) Saurer Regen, eine Folge der Störung hydrogeochemischer Kreisläufe. Naturwissenschaften 70: 216–223CrossRefGoogle Scholar
  30. Ulrich B (1981) Die Rolle der Wälder für die Wassergüte unter dem Einfluß des sauren Niederschlags. Agrarspektram 1: 212–231Google Scholar
  31. U.S. Department of the Interior (1994) International land reclamation and mine drainage conference and third international conference on the abatement of acidic drainage. Vol 1-4: Mine Drainage. Proc Conf Pittsburgh 1994. Bureau of Mines Special Publ SP 06A/B/C/D-94Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. Schultze
  • W. Geller

There are no affiliations available

Personalised recommendations