Skip to main content

Investigations on Different Mercury-Phases in Soils of a Mercury-Mining Area by a Pyrolysis Technique

  • Chapter
Geochemical Approaches to Environmental Engineering of Metals

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Mercury (Hg) contamination has attracted more attention than many other trace elements in the past few years. Local contamination due to mining activities and to industrial use of Hg, as well as increased deposition into the soils of regions far from industrial emission sources, has been detected (Lindquist et al. 1991; Glass et al. 1991; Iverfeld 1991). The emission of Hg is mainly caused by the combustion of fossil fuels, by waste incineration, by chlor-alkali plants, and by the processing of other metals (Pacyna and Munch 1991). The hazard potential of soil contaminations depends mainly on the type of bond, which controls toxicity and mobility. Due to redox- and pH-conditions of the soil and to the adsorption capacity of the different soil components, Hg can be associated with clay minerals, iron oxides, or organic material (Anderson 1979). The strong affinity of Hg to organic materials, especially to humic acids, has been shown by many authors (e. g. Strohal and Huljev 1971; Kerndorff and Schnitzer 1980; Johannsson et al. 1991; Mierle and Ingram 1991). Natural Hg anomalies are usually related to ore deposits where Hg occurs predominantly as cinnabar. Cinnabar shows very low solubility and strong resistance against weathering; thus, the bioavailibility of this form is low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard B, Arsenie I (1991) Abiotic reduction of mercury by humic substances in aquatic system. An important process for the mercury cycle. Water Air Soil Poll. 56: 457–464

    Google Scholar 

  • Anderson A (1979) Mercury in soils. In: Nriagu JW (ed.): The biochemistry of mercury in the environment. Elsevier, Amsterdam, pp 79–112

    Google Scholar 

  • Azzaria LM, Afiabi A (1991) Stepwise thermal analysis technique for estimating mercury phases in soils and sediments. Water Air Soil Poll 56: 203–217

    Article  CAS  Google Scholar 

  • Di Giulio RT, Ryan EA (1987) Mercury in soils and clams from a North Carolina peatland. Water Air Soil Poll 33: 205–219

    Article  Google Scholar 

  • Dües G (1987) Untersuchungen zu den Bindungsformen und ökologisch wirksamen Fraktionen ausgewählter toxischer Schwermetalle in ihrer Tiefenverteilung in Hamburger Böden. Hamburger Bodenkundliche Arbeiten 9: 265

    Google Scholar 

  • Glass GE, Sorensen JA, Schmidt KW, Rapp GR, Yap D, Fräser D (1991) Mercury deposition and sources for the upper Great Lakes region. Water Air Soil Poll 56: 235–249

    Article  CAS  Google Scholar 

  • Hess A. (1992) Verteilung, Mobilität und Verfügbarkeit von Quecksilber in Böden und Sedimenten am Beispiel zweier hochbelasteter Industriestandorte: Idrija/Slowenien und

    Google Scholar 

  • Frankfurt/M.- Griesheim. Unpubl. PhD. thesis, University of Heidelberg, 171p

    Google Scholar 

  • Iverfeldt A. (1991) Occurrence and turnover of atmospheric mercury over the nordic countries. Water Air Soil Poll 56: 251–265

    Article  CAS  Google Scholar 

  • Johannsson K, Aastrup M, Andersson A, Bringmark L, Iverfeldt A (1991) The coupling of mercury and organic matter in the biogeochemical cycle towards a mechanistic model for the boreal forest zone. Water Air Soil Poll, 56: 267–281

    Article  Google Scholar 

  • Kerndorf H, Schnitzer M (1980) Sorption of metals on humic acid. Geochim Cosmochim Acta, 44: 1701–1708

    Article  Google Scholar 

  • Kosta L, Byrne AR, Zelenko V, Stegnar P, Dermelj M, Ravnik V (1974) Studies on the uptake, distribution and transformations of mercury in living organisms in the Idrija region and comparative areas. Vestnik SDK, 21: 49–76

    CAS  Google Scholar 

  • Lindquist O, Johannsson K, Aastrup M, Andersson A, Bringmark L, Hovsenius G, Hikanson L, Iverfeld A, Meili M, Timm B (1991) Mercury in the Swedish environment - recent research on causes, consequences and corrective methods. Water Air Soil Poll, 55: 261

    Google Scholar 

  • Mierle G, Ingram R (1991) The role of humic substances in the mobilization of mercury from watersheds. Water Air Soil Poll, 56: 349–357

    Article  CAS  Google Scholar 

  • Mlakar I, Drovenik M (1971) Structural and genetic particularities of the Idrija mercury ore deposit. Geologija, 14: 67–128

    CAS  Google Scholar 

  • Neville GA (1967) Toxicity of mercury vapour. Can Chem Educa, 3, no 1: 4 - 7

    CAS  Google Scholar 

  • Pacyna JM, Munch J (1991) Anthropogenic mercury emission in Europe. Water Air Soil Poll, 56: 51–61

    Article  CAS  Google Scholar 

  • Papp C, Filipek LH, Smith, KS (1991) Selectivity and effectiveness of extractants used to release metals associated with organic matter. Appl Geochem, 6: 349–353

    Article  CAS  Google Scholar 

  • Peng A, Wang Z (1985) Mercury in river sediments. In: Environ Inorg Chem, VCH Publishers, Inc. Weinheim, 21: 393–400

    Google Scholar 

  • Pirc S (1991) Mercury in the atmosphere of Idrija and surroundings.-(Zivo srebo v ozracju nad Idrijo in okolico). Idrijski razgledi XXXV, 1990/ 1-2, Izdal Mestni muzei Idrija, Idrija, p 1

    Google Scholar 

  • Revis NW, Osborne TR, Holdsworth G, Hadden C (1989) Distribution of mercury species in soil from a mercury-contaminated site. Water Air Soil Poll, 45: 105–113

    CAS  Google Scholar 

  • Schuster E (1991) The behaviour of mercury in the soil with special emphasis on complexation and adsorption processes - a review of the literature. Water Air Soil Poll, 56: 667–680

    Article  CAS  Google Scholar 

  • Strohal P, Huljev D (1971) Investigation of mercury-pollutant interaction with humic acids by means of radiotracers. Proc Symp: Nucl Techn Environ Poll, IAEA, Vienna, p 349

    Google Scholar 

  • Watling RL (1981) The identification and significance of mercury compounds in estuarine sediments. Int Conf Heavy Metals in the Enviroment, CEP Consultants Ltd., Amsterdam, p 591

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biester, H., Hess, A., Müller, G. (1996). Investigations on Different Mercury-Phases in Soils of a Mercury-Mining Area by a Pyrolysis Technique. In: Reuther, R. (eds) Geochemical Approaches to Environmental Engineering of Metals. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79525-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79525-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79527-5

  • Online ISBN: 978-3-642-79525-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics