Advertisement

Waste Treatment: Geochemical Engineering Approach

  • U. Förstner
Chapter
Part of the Environmental Science book series (ESE)

Abstract

Contaminated solid materials, which may affect groundwater pollution include municipal solid wastes, sewage sludge, dredged sediments, industrial by-products, wastes from mining and smelting operations, filter residues from waste water treatment and atmospheric emission control, ashes and slags from burning of coal and oil, and from incineration of municipal refuse and sewage sludge. The problem of “contaminated land” was introduced with the accidential detection of largescale pollution from industrial waste deposits which had been handled improperly.

Keywords

Solid Waste Sewage Sludge Municipal Solid Waste Waste Treatment Municipal Solid Waste Incineration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae MO et al. (1984) Changing biogeochemical cycles - group report. In: Nriagu JO (ed) Changing metal cycles and human health. Dahlem- Workshop. Springer, Berlin Heidelberg New York, pp 359 – 373CrossRefGoogle Scholar
  2. Anonymous (1980) Groundwater strategies. Environ Sei Technol 14: 1030 – 1035CrossRefGoogle Scholar
  3. Anonymous (1986a) National priorities list fact book. HW 7.3, 94 pp. US Environmental Protection Agency, Washington DCGoogle Scholar
  4. Anonymous (1986b): Leitbild für die schweizerische Abfallwirtschaft (Guidelines for the waste management in Switzerland), Schriftenreihe Umweltschutz No 51. Eidgenössische Kommission für Abfallwirtschaft, Bundesamt für Umweltschutz BernGoogle Scholar
  5. Ameth, J-D, Milde G, Kerndorff H, Schleyer, R (1989) Waste deposit influences on ground water quality as a tool for waste type and site selection for final storage quality. In: The landfill - reactor and final storage, Baccini P (ed). Lecture Notes in Earth Sciences, Springer, Berlin Heidelberg New York, 20: 399–415Google Scholar
  6. Baccini P (ed)(1989) The landfill - reactor and final storage. Lecture Notes in Earth Sciences 20. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Baccini P, Brunner PH (1991) Metabolism of the anthroposphere. Springer, Berlin Heidelberg Hew YorkGoogle Scholar
  8. Baccini P, Bader H-P, Belevi H, Ferrari S, Gamper B, Johnson A, Kersten M, Lichtensteiger T, Zeltner C (1993) Deponierung fester Rückstände aus der Abfallwirtschaft - Endlagerqualität am Beispiel Müllschlacke. Workshop Kartause Ittingen, Sept. 14–16 1993. vdf Hochschulverlag ZürichGoogle Scholar
  9. Baccini P, Belevi H, Lichtensteiger T (1992) Die Deponie in einer ökologisch orientierten Volkswirtschaft. Gaia 1: 34 – 49Google Scholar
  10. Bambauer HU (1992) Mineralogische Schadstoffimmobilisierung in Deponaten - Beispiel: Rückstände aus Braunkohlenkraftwerken. BWK Umwelt-Special March 1992: 29 – 34Google Scholar
  11. Belevi H, Stämpfli DM, Baccini P (1992) Chemical behaviour of municipal solid waste incinerator bottom ash in monofills. Waste Management Research 10: 153 – 167Google Scholar
  12. Belouschek, P, Kügler JU, van der Sloot HA, Beukems H (1995) Labor- und Praxisuntersuchungen zum Emissionsverhalten von wasserglasvergüteten Dichtsystem im Altlastenbereich und in der Deponietechnik. Abstr V 16 Annual Meeting Water Chemistry Group, German Chemical Society, HitzackerGoogle Scholar
  13. Blakey NC (1984) Behavior of arsenical wastes co-disposed with domestic solid wastes. J Water Pollut Control Fed 56: 69 – 75Google Scholar
  14. Bokuniewicz HJ (1982) Submarine borrow pits as containments for dredged sediments. In: Kester DR, Ketchum BH, Duedall IW, Parks PK (eds) Dredged material disposal in the ocean, pp 215 – 227. John Wiley & Sons, New YorkGoogle Scholar
  15. Calmano W (1988) Stabilization of dredged mud. In: Salomons W, Förstner U (eds )Google Scholar
  16. Environmental management of solid waste: dredged materials and mine tailings. Springer, Berlin Heidelberg New York, pp 80–98Google Scholar
  17. Calmano W, Ahlf W, Förstner U (1988) Study of metal sorption/desorption processes on competing sediment components with a multi-chamber device. Environ Geol Water Sei 11: 77 – 84CrossRefGoogle Scholar
  18. Dreesen DR, Gladney ES, Owens JW, Perkins BL, Wienke CL, Wangen LE (1977) Comparison of levels of trace elements extracted from fly ash and levels found in effluent waters from a coal-fired power plant. Environ Sei Technol 11: 1017 – 1019CrossRefGoogle Scholar
  19. EKESA-Projeet (1992) Emissionsabschätzung für Kehrichtschlacke. MBT Umwelttechnik Zürieh/EAWAG, Abt. Abfallwirtschaft und Stoffhaushalt Dübendorf, 156 ppGoogle Scholar
  20. Faulstich M, Zachäus, D (1992) Verfahren zur Behandlung von Rückständen aus der Müllverbrennung. In: Faulstich M (ed) Rückstände aus der Müllverbrennung. EF Verlag für Energie und Umwelttechnik, Berlin, pp 1 – 159Google Scholar
  21. Faulstich M, Freudenberg A, Köcher P, Kley G (1992) RedMelt-Verfahren zur Wertstoffgewinnung aus Rückständen der Abfallverbrennung. In: Faulstich M (ed) Rückstände aus der Müllverbrennung. EF Verlag für Energie und Umwelttechnik, Berlin, pp 703 – 727Google Scholar
  22. Förstner U (1994) Geochemische Konzepte in Abfallforschung und -praxis. In: Matsehullat J, Müller G (eds) Geowissenschaften und Umwelt. Springer, Berlin Heidelberg New York, pp 315 – 330Google Scholar
  23. Förstner U (1995a) Non-linear release of metals from aquatic sediments. In: Salomons W, Stigliani WM (eds) Biogeodynamics of pollutants in soils and sediments. Springer, Berlin Heidelberg New York, pp 247 – 307Google Scholar
  24. Förstner U (1995b) Land contamination by metals - global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) Metal speciation and contamination of soil. Lewis Publishers, Boca Raton, pp 1 – 33Google Scholar
  25. Förstner U (1995c) Contaminated aquatic sediments and waste sites: Geochemical engineering solutions. In: Salomons W, Förstner U, Mader P (eds) Heavy metals–problems and solutions. Springer, Berlin Heidelberg New York, pp 237 – 256Google Scholar
  26. Förstner U, Calmano W, Kienz W (1991) Assessment of long-term metal mobility in heatprocessing wastes. Water Air Soil Pollut 57–58: 319 – 328CrossRefGoogle Scholar
  27. Gambrell RP, Reddy CN, Khalid RA (1983) Characterization of trace and toxic materials in sediments of a lake being restored. J Water Pollut Control Fed 55: 1201 – 1213Google Scholar
  28. Goumans JJJM, Van der Sloot HA, Aalbers ThG (eds)(1991) Waste materials in construction. Studies in Environmental Science 48. Elsevier, Amsterdam, 672 ppGoogle Scholar
  29. Herman R, Ardekani SA, Ausubel JH (1989) Dematerialization. In: Ausubel JH, Sladovich HE (eds) Technology and environment. National Academy Press Washington DC, pp 50 – 69Google Scholar
  30. Heron G, Christensen TH (1995) Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer ( Vejen, Denmark). Environ Sei Technol 29: 187–192Google Scholar
  31. Hunt CD, Smith DL (1983) Remobilization of metals from polluted marine sediments. Can J Fish Aquat Sei 40: 132 – 142CrossRefGoogle Scholar
  32. Kersten M, Förstner U (1991) Geochemical characterization of the potential trace metal mobility in cohesive sediment. Geo-Marine Letts 11: 184 – 187CrossRefGoogle Scholar
  33. Kersten M, Moor, C, Johnson CA (1995) Emissionspotential einer Müllver-brennungsschlacken- Monodeponie für Schwermetalle. Müll und Abfall 11 /95, pp 748 – 758Google Scholar
  34. Kester DR, Ketchum BH, Duedall IW, Park PK (eds)(1983) Wastes in the ocean. Vol 2: Dredged-material disposal in the ocean. Wiley, New York, 299 ppGoogle Scholar
  35. Lichtensteiger T, Brunner PH, Langmeier M (1988). Klärschlamm in Deponien. EAWAG Project No. 30–681. EC-COST.Google Scholar
  36. Maaß B, Miehlich G, (1988) Die Wirkung des Redoxpotentials auf die Zusammensetzung der Porenlösung in Hafenschlickspülfeldem. Mitt Dtsch Bodenkunde Ges 56: 289 – 294Google Scholar
  37. Malone PG, Jones LW, Larson RJ (1982) Guide to the disposal of chemically stabilized and solidified waste. U.S. Environmental Protection Agency, Washington D.C.Google Scholar
  38. Müller G (1995) Das Schwarze Meer - ein sicheres Endlager für schwermetallkontaminierte Feststoffe?! Geowissenschaften 13: 202 – 206Google Scholar
  39. Neumann-Malkau P (1991) Anthropogenic mass movement - interfering with geologic cycles? In: Geotechnica Congress Cologne, Sept 1991, pp 153 – 154Google Scholar
  40. Obermann P, Cremer S (1992) Mobilisierung von Schwermetallen in Porenwässern von belasteten Böden und Deponien. Entwicklung eines aussagekräftigen Elutionsverfahrens. Materialien zur Ermittlung und Sanierung von Altlasten. Bd 6. Landesamt für Wasser und Abfall Nordrhein-Westfalen. Düsseldorf, S 127Google Scholar
  41. Pöllmann H (1994) Immobile Fixierung von Schadstoffen in Speichermineralen. In: Matschullat J, Müller G (eds) Geowissenschaften und Umwelt. Springer, Berlin Heidelberg New York, pp 331 – 340Google Scholar
  42. Roos H-J (1995) Schwermetallentfernung aus Böden und Rückständen mit Hilfe organischer Komplexbildner. Dissertation an der Fakultät für Bauingenieur- undGoogle Scholar
  43. Vermessungswesen der Rheinisch-Westfälischen Technischen Hochschule Aachen, p 221Google Scholar
  44. Salomons W (1993) Non-linear and delayed responses of toxic chemicals in the environment. In: Arendt F, Annokée GJ, Bosman R, van den Brink WJ (eds) Contaminated Soil ’93. Kluwer, Dordrecht, pp 225 – 238CrossRefGoogle Scholar
  45. Salomons W (1995) Long-term strategies forhandling contaminated sites and large-scale areas. In: Salomons W, Stigliani WM (eds) Biogeodynamics of pollutants in soils and sediments. Springer, Berlin Heidelberg New York, pp 1 – 30Google Scholar
  46. Salomons W, Förstner U (Eds)(1988) Environmental management of solid waste: dredged materials and mine tailings. Springer, Berlin Heidelberg New YorkGoogle Scholar
  47. Schoer J, Förstner U (1987) Estimation of long-term behavior of heavy metals in sludges. In: Lindberg SE, Hutchinson TC (eds) Proc Int Conf Heavy Metals in the Environment. New Orleans. CEP Consultants, Edinburgh, pp 380 – 383Google Scholar
  48. Schuiling RD (1990) Geochemical engineering, some thoughts on a new research field. Applied Geochemistry 5: 251 – 262CrossRefGoogle Scholar
  49. Seidel H, Ondruschka J, Stottmeister U (1995) Heavy metal removal from contaminated sediments by bacterial leaching: A case study on the field scale. In: van den Brink WJ, Bosman R, Arendt F (eds) Contaminated soil ’95. Kluwer Academic Publ, Dordrecht, pp 1039 – 1048Google Scholar
  50. Stigliani WM (1992) Chemical time bombs, predicting the unpredictable. In: Chemical time bombs. European state-of-the-art conference on delayed effects of chemicals in soils and sediments. Veldhoven, The Netherlands, Sept 2-5, p 12 Swift RS ( 1977 ) Soil organic matter studies. IAEA Vienna, pp 275 – 281Google Scholar
  51. Turner RR, Lo wry P, Levin M, Lindberg SE, Tamura T (1982) Leachability and aqueous speciation of selected trace constituents of coal fly ash. Final Report, Research Project 1061–1/EA–2588. Electric Power Research Institute, Palo Alto, CaliforniaGoogle Scholar
  52. Voronkevich SD (1994) Engineering geochemistry: problems and applications. Applied Geochemistry 9: 553 – 559CrossRefGoogle Scholar
  53. Wiles CC, Barth E, de Percin P (1988) Status of solidification/stabilization in the United States and factors affecting its use. In: Wolf K, Van den Brink WJ, Colon FJ (eds) Contaminated soil 88. Kluwer Academic Publ, Dordrecht, The Netherlands, 1: 947 – 956Google Scholar
  54. Wilmoth RC, Hubbard SJ, Burckle JO, Martin JF (1991) Production and processing of metals: their disposal and future risks. In: Merian E (ed) Metals and their compounds in the environment. VCH Verlagsgesellschaft Weinheim, Chap 1.2, pp 19 – 65Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • U. Förstner

There are no affiliations available

Personalised recommendations