Skip to main content

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 88))

Abstract

Quite different types of renal injury often lead to a common histopathological pattern. The histopathological changes that may be detected are interstitial fibrosis, glomerulosclerosis, and tubular atrophy. Even after the original etiological factor has ceased to act, the chronic renal disorders may continue to progress toward the end stage (KLahr et al. 1988). Several possible mechanisms responsible for progression and pathogenesis of chronic renal failure have been proposed. Some of these hypotheses have been limited to specific deseases while others have tried to cover all conditions leading to end-stage renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RG, Bueschen AJ, Lloyd LK, Dubovsky EV, Burns JR (1991) Short-term and long–term changes in renal function after donor nephrectomy. J Urol 145: 11–13

    PubMed  CAS  Google Scholar 

  • Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A (1980) Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract 167: 204–216

    Google Scholar 

  • Barajas L, Lupu AN, Kaufman JJ, Latta H, Maxwell MH (1967) The value of the renal biopsy in unilateral renovascular hypertension. Nephron 4: 231–247

    Article  Google Scholar 

  • Baxter TJ (1965) Cysts arising in the renal corpuscle. A microdissection study. Arch Dis Child 40: 455–463

    Article  PubMed  CAS  Google Scholar 

  • Biber TUL, Mylle M, Baines AD, Gottschalk CW, Oliver JR, MacDowell MC (1968) A study by micropuncture and microdissection of acute renal damage in rats. Am J Med 44: 664–705

    Article  PubMed  CAS  Google Scholar 

  • Bidani AK, Mitchell KD, Schwartz MM, Navar LG, Lewis EJ (1990) Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model. Kidney Int 38: 28–38

    Article  PubMed  CAS  Google Scholar 

  • Bohle A, Bader R, Grund KE, Mackensen S, Neunhoeffer J (1977) Serum creatinine concentration and renal interstitial volume. Analysis of correlations in endocapillary (acute) glomerulonephritis and in moderately severe mesangioproliferative glomerulonephritis. Virchows Arch [A] 375: 87–96

    Google Scholar 

  • Bohle A, Mackensen-Haen S, von Gise H (1987) Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am J Nephrol 7: 421–433

    Article  PubMed  CAS  Google Scholar 

  • Bohle A, Gärtner H-V, Laberke H-G, Krück F (1989a) The kidney. Structure and function, 1st edn. Schattauer, Stuttgart, p 1

    Google Scholar 

  • Bohle A, Kressel G, Müller CA, Müller GA (1989b) The pathogenesis of chronic renal failure. Pathol Res Pract 185: 421–440

    PubMed  CAS  Google Scholar 

  • Bohle A, Mackensen-Haen S, von Gise H, Grund K–E, Wehrmann M, Batz C, Bogenschütz O, Schmitt H, Nagy J, Muller C, Müller G (1990) The consequences of tubulo–interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis. Pathol Res Pract 186: 135–144

    Google Scholar 

  • Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307: 652–659

    Article  PubMed  CAS  Google Scholar 

  • Bricker NS (1969) Editorial: On the meaning of the intact nephron hypothesis. Am J Med 46: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Bricker NS, Fine LG (1981) The renal response to progressive nephron loss. In: Brenner BM, Rector FC Jr (eds) The kidney. Saunders, Philadelphia, pp 1056–1096

    Google Scholar 

  • Bricker NS, Morrin PAF, Kime SW (1960) The pathologic physiology of chronic Bright’s disease. An exposition of the “intact nephron hypothesis. ” Am J Med 28: 77–98

    Article  PubMed  CAS  Google Scholar 

  • Bright R (1827–1831) A report of medical cases, selected with a view to illustrating the symptoms and cure of diseases by a reference to morbid anatomy, vol 1. Longmans, Rees, Orme, Brown and Green, London

    Google Scholar 

  • Burstone MS (1962) Enzyme histochemistry. Academic, New York

    Google Scholar 

  • Christensen S, Ottosen PD, Olsen S (1982) Severe functional and structural changes caused by lithium in the developing rat kidney. Acta Pathol Microbiol Immunol Scand [A] 90: 257–267

    CAS  Google Scholar 

  • Christensen S, Marcussen N, Petersen JS, Shalmi M (1992) Effects of uninephrectomy and highprotein feeding on lithium-induced chronic renal failure in rats. Renal Physiol Biochem 15: 141–149

    PubMed  CAS  Google Scholar 

  • Cohen AH, Border WA, Rajfer J, Dumke A, Glassock RJ (1984) Interstitial Tamm-Horsfall protein in rejecting renal allografts. Identification and morphologic pattern of injury. Lab Invest 50: 519–525

    Google Scholar 

  • Couser WG, Stilmant MM (1975) Mesangial lesions and focal glomerular sclerosis in the aging rat. Lab Invest 33: 491–501

    PubMed  CAS  Google Scholar 

  • Damadian RV, Shwayri E, Bricker NS (1965) On the existence of non-urine-forming nephrons in the diseased kidney of the dog. J Lab Clin Med 65: 26–39

    PubMed  CAS  Google Scholar 

  • Evan AP, Tanner GA, Blomgren P, Knopp LC (1986) Proximal tubule morphology after single nephron obstruction in the rat kidney. Kidney Int 30: 818–827

    Article  PubMed  CAS  Google Scholar 

  • Fischbach H, Mackensen S, Grund K–E, Kellner A, Bohle A (1977) Relationship between glomerular lesions, serum creatinine and interstitial volume in membrano-proliferative glomerulonephritis. Klin Wochenschr 55: 603–608

    Article  PubMed  CAS  Google Scholar 

  • Franklin SS, Merrill JP (1960) The kidney in health; the nephron in disease. Am J Med 28: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Fries JWU, Sandstrom DJ, Meyer TW, Rennke HG (1989) Glomerular hypertrophy and epithelial cell injury modulate progressive glomerulosclerosis in the rat. Lab Invest 60: 205–218

    PubMed  CAS  Google Scholar 

  • Gibson IW, Downie I, Downie TT, Han SW, More IAR, Lindop GBM (1992) The parietal podocyte: a study of the vascular pole of the human glomerulus. Kidney Int 41: 211–214

    Article  PubMed  CAS  Google Scholar 

  • Gibson IW, More IAR, Lindop GBM (1993) Acquired glomerulocystic change in human kidney: a scanning electron microscope study. EDTA/EDTNA congress, Glasgow, p 23

    Google Scholar 

  • Grond J, Beukers JYB, Schilthuis MS, Weening JJ, Eleman JD (1986) Analysis of renal structural and functional features in two rat strains with a different susceptibility to glomerular sclerosis. Lab Invest 54: 77–83

    PubMed  CAS  Google Scholar 

  • Gundersen HJG, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Miller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sfensen FB, Vesterby A, West MJ (1988a) The new stereological tools: disector, fractionator, nucleator and point-sampled intercepts and their use in pathological research and diagnosis. APMIS 96: 857–881

    Article  PubMed  CAS  Google Scholar 

  • Gundersen HJG, Bendtsen TF, Korbo L, Marcussen N, Miller A, Nielsen K, Nyengaard JR,Pakkenberg B, Sørensen FB, Vesterby A, West MJ (1988b) some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96: 379–394

    Google Scholar 

  • Heptinstall RH (1983) Pathology of the kidney. Little, Brown, Boston Heptinstall RH, Gorrill RH (1955) Experimental pyelonephritis and its effect on the blood pressure. J Pathol Bacteriol 69: 191–198

    Article  Google Scholar 

  • Heptinstall RH, Stryker M (1962) Experimental pyelonephritis. A study of the susceptibility of the hypertensive kidney to infection in the rat. Bull Johns Hopkins Hosp 111: 292–306

    Google Scholar 

  • Heptinstall RH, Michaels L, Brumfitt W (1960) Experimental pyelonephritis: the role of arterial narrowing in the production in the kidney of chronic pyelonephritis. J Pathol Bacteriol 80: 249–258

    Article  PubMed  CAS  Google Scholar 

  • Heptinstall RH, Kissane JM, Still WJS (1963) Experimental pyelonephritis. Morphology and quantitative histochemistry of glomeruli in pyelonephritic scars in the rat. Bull Johns Hopkins Hosp 112: 299–311

    Google Scholar 

  • Hoedemaeker PJ, Weening JJ (1989) Relevance of experimental models for human nephropathology. KidneyInt35:1015–1025

    Google Scholar 

  • Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241 (Renal Fluid Electrolyte Physiol 10): F85–F93

    PubMed  CAS  Google Scholar 

  • Hostetter TH, Rennke HG, Brenner BM (1982) Compensatory renal hemodynamic injury: a final common pathway of residual nephron destruction. Am J Kidney Dis I: 310–314

    Google Scholar 

  • Hostetter TH, Meyer TW, Rennke HG, Brenner BM (1986) Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 30: 509–517

    Article  PubMed  CAS  Google Scholar 

  • Hostetter TH, Nath KA, Hostetter MK (1988) Infection–related chronic interstitial nephropathy. Semin Nephrol 8: 11–16

    PubMed  CAS  Google Scholar 

  • Howie AJ, Gunson BK, Sparke J (1990) Morphometric correlates of renal exretory function. J Pathol 160: 245–253

    Article  PubMed  CAS  Google Scholar 

  • Ivanyi B, Olsen TS (1991) Immunohistochemical identification of tubular segments in percutaneous renal biopsies. Histochemistry 95: 351–356

    Article  PubMed  CAS  Google Scholar 

  • Ivanyi B, Olsen S, Marcussen N (1994) Tubulitis in primary vascular and glomerular renal disease, (submitted)

    Google Scholar 

  • Jacobsen NO, Jørgensen F, Thomsen Ac (1967) On the localization of some phosphatases in three different segments of the proximal tubules in the rat kidney. J Histochem Cytochem 15: 456–469

    Article  CAS  Google Scholar 

  • Jepsen FL, Mortensen PB (1979) Interstitial fibrosis of the renal cortex in minimal change lesion and its correlation with renal function. A quantitative study. Virchows Arch [A] 383: 265–270

    Google Scholar 

  • Kaplan C, Pasternack B, Shah H, Gallo G (1975) Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol 80: 227–234

    PubMed  CAS  Google Scholar 

  • Kappel B, Olsen S (1980) Cortical interstitial tissue and sclerosed glomeruli in the normal human kidney, related to age and sex. A quantitative study. Virchows Arch [A] 387: 271–277

    Google Scholar 

  • Klahr S, Purkerson ML, Harris K (1988) Mechanisms of progressive renal failure in experimental animals and their applicability to man. In: Davison AM (ed) Nephrology, vol II. Proceedings of the 10th international congress on nephrology. Bailliere Tindall, London, pp 1182–1191

    Google Scholar 

  • Koletsky S, Goodsit AM (1960) Natural history and pathogenesis of renal ablation hypertension. Arch Pathol 69: 654–662

    PubMed  CAS  Google Scholar 

  • Kramp RA, MacDowell M, Gottschalk CW, Oliver JR (1974) A study by microdissection and micropuncture of the structure and the function of the kidneys and the nephrons of rats with chronic renal damage. Kidney Int 5: 147–176

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Muchmore A (1990) Tamm-Horsfall protein—uromodulin (1950–1990). Kidney Int 37: 1395–1401

    Article  PubMed  CAS  Google Scholar 

  • Lombet JR, Adler SG, Anderson PS, Nast CC, Olsen DR, Glassock RJ (1989) Sex vulnerability in the subtotal nephrectomy model of glomerulosclerosis in the rat. J Lab Clin Med 114: 66–74

    PubMed  CAS  Google Scholar 

  • Lubowitz H, Purkerson ML, Sugita M, Bricker NS (1969) GFR per nephron and per kidney in chronically diseased (pyelonephritic) kidney of the rat. Am J Physiol 217: 853–857

    PubMed  CAS  Google Scholar 

  • Mackensen-Haen S, Bader R, Grund KE, Bohle A (1981) Correlations between renal cortical interstitial fibrosis, atrophy of the proximal tubules and impairment of the glomerular filtration rat. Clin Nephrol 15: 167–171

    PubMed  CAS  Google Scholar 

  • Mackensen-Haen S, Eissele R, Bohle A (1988) Contribution on the correlation between morphometric parameters gained from the renal cortex and renal function in IgA nephritis. Lab Invest 59: 239–244

    PubMed  CAS  Google Scholar 

  • Mackensen-Haen S, Bohle A, Christensen J, Wehrmann M, Kendziorra H, Kokot F (1992) The consequences for renal function of widening of the interstitium and changes in the tubular epithelium of the renal cortex and outer medulla in various renal diseases. Clin Nephrol 37: 70–77

    PubMed  CAS  Google Scholar 

  • Malt RA (1983) Humoral factors in regulation of compensatory renal hypertrophy. Kidney Int 23: 611–615

    Article  PubMed  CAS  Google Scholar 

  • Marcussen N (1990) Atubular glomeruli in cisplatin–induced chronic interstitial nephropathy. An experimental stereological investigation. APMIS 98: 1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Marcussen N (1991) Atubular glomeruli in renal artery stenosis. Lab Invest 65: 558–565

    PubMed  CAS  Google Scholar 

  • Marcussen N (1992) Atubular glomeruli and the structural basis for chronic renal failure. Lab Invest 66: 265–284

    PubMed  CAS  Google Scholar 

  • Marcussen N, Jacobsen NO (1992) The progression of cisplatin-induced tubulointerstitial nephropathy in rats. APMIS 100: 256–268

    Article  PubMed  CAS  Google Scholar 

  • Marcussen N, Olsen TS (1990) Atubular glomeruli in patients with chronic pyelonephritis. Lab Invest 62: 467–473

    PubMed  CAS  Google Scholar 

  • Marcussen N, Ottosen PD, Christensen S, Olsen TS (1989) Atubular glomeruli in lithium–induced chronic nephropathy in rats. Lab Invest 61: 295–302

    PubMed  CAS  Google Scholar 

  • Marcussen N, Ottosen PD, Christensen S (1990) Ultrastructural quantitation of atubular and hypertrophic glomeruli in rats with lithium-induced chronic nephropathy. Virchows Arch [A] 417: 513–522

    Article  CAS  Google Scholar 

  • Marcussen N, Christensen S, Petersen JS, Shalmi M (1991) Atubular glomeruli, renal function and hypertrophic response in rats with chronic lithium nephropathy. Virchows Arch [A] 419: 281–289

    Article  CAS  Google Scholar 

  • Marcussen N, Nyengaard JR, Christensen S (1994) Compensatory growth of glomeruli is accomplished by an increased number of glomerular capillaries. Lab Invest 70: 868–874

    PubMed  CAS  Google Scholar 

  • Miller JC (1986) Dimensional changes of proximal tubules and cortical capillaries in chronic obstructive renal disease. A light-microscopic morphometric analysis. Virchows Arch [A] 410: 153–158

    Google Scholar 

  • Miller JC, Jøgensen TM, Mortensen J (1986) Proximal tubular atrophy: qualitative and quantitative structural changes in chronic obstructive nephropathy in the pig. Cell Tissue Res 244: 479–491

    Google Scholar 

  • Muehrcke RC, Kark RM, Pirani CL, Pollak UF (1957) Lupus nephritis: a clinical and pathologic study based on renal biopsies. Medicine (Baltimore) 36: 1–145

    CAS  Google Scholar 

  • Nyengaard JR (1993) The quantitative development of glomerular capillaries in rats with special reference to unbiased stereological estimates of their number and sizes. Microvasc Res 45: 243–261

    Article  PubMed  CAS  Google Scholar 

  • Nyengaard JR, Marcussen N (1993) The number of glomerular capillaries estimated by an unbiased and efficient stereological method. J Microsc 171: 27–37

    Article  PubMed  CAS  Google Scholar 

  • Ogata K (1990) Clinicopathological study of kidneys from patients on chronic dialysis. Kidney Int 37: 1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Oliver J (1939) Architecture of the kidney in chronic Blight’s disease. Hoeber, New York

    Google Scholar 

  • Oliver J (1950) When is the kidney not a kidney? J Urol 63: 373–402

    Google Scholar 

  • Oliver J (1953) Correlations of structure and function and mechanisms of recovery in acute tubular necrosis. Am J Med 15: 535–557

    Article  PubMed  CAS  Google Scholar 

  • Oliver J, Bloom F, MacDowell M (1941) Structural and functional transformations in the tubular epithelium of the dog’s kidney in chronic Bright’s disease and their relation to mechanisms of renal compensation and failure. J Exp Med 73: 141–159

    Article  PubMed  CAS  Google Scholar 

  • Olivetti G, An versa P, Rigamonti W, Vitali-Mazza L, Loud AV (1977) Morphometry of the renal corpuscle during postnatal growth and compensatory hypertrophy. A light-microscope study. J Cell Biol 75: 573–585

    Google Scholar 

  • Olsen TS, Wasssef NF, Olsen HS, Hansen HE (1986) Ultrastructure of the kidney in acute interstitial nephritis. Ultrastruct Pathol 10: 1–16

    Article  PubMed  CAS  Google Scholar 

  • Olson JL, Heptinstall RH (1988) Nonimmunologic mechanisms of glomerular injury. Lab Invest 59: 564–578

    PubMed  CAS  Google Scholar 

  • Olson JL, Hostetter TH, Rennke HG, Brenner BM, Venkatachalam MA (1982) Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass. Kidney Int 22: 112–126

    Article  PubMed  CAS  Google Scholar 

  • Ottosen PD, Sigh B, Kristensen J, Olsen S, Christensen S (1984) Lithium-induced interstitial nephropathy associated with chronic renal failure. Reversibility and correlation between functional and structural changes. Acta Pathol Microbiol Immunol Scand [A] 92: 447–454

    Google Scholar 

  • Raaschou F (1948) Studies of chronic pyelonephritis with special reference to the kidney function. Munksgaard, Copenhagen

    Google Scholar 

  • Remuzzi A, Pergolizzi R, Mauer MS, Bertani T (1990) Three-dimensional morphometric analysis of segmental glomerulosclerosis in the rat. Kidney Int 38: 851–856

    Article  PubMed  CAS  Google Scholar 

  • Risdon RA, Sloper JC, de Wardener HE (1968) Relationship between renal function and histological changes found in renal–biopsy specimens from patients with persistent glomerular nephritis. Lancet 2: 363–366

    CAS  Google Scholar 

  • Rosenbaum JL, Mikail M, Wiedmann F (1967) Further correlation of renal function with kidney biopsy in chronic renal disease. Am J Med Sci 254: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural–functional correlations in renal disease, part II: the correlations. Hum Pathol 1: 631–641

    Article  PubMed  CAS  Google Scholar 

  • Scherberich JE, Wolf G, Albers C, Nowark A, Stuckhardt C, Schoeppe W (1989) Glomerular and tubular membrane antigens reflecting cellular adaptation in human renal failure. Kidney Int 36 [Suppl 27]: S38–S51

    Google Scholar 

  • Seyer–Hansen K, Hansen J, Gundersen HJG (1980) Renal hypertrophy in experimental diabetes. Diabetologia 18: 501–505

    Google Scholar 

  • Seyer–Hansen K, Gundersen HJG, ©sterby R (1985) Stereology of the rat kidney during compensatory renal hypertrophy. Acta Pathol Microbiol Immunol Scand [A] 93: 9–12

    Google Scholar 

  • Shea SM, Raskova J, Morrison AB (1978) A stereologic study of glomerular hypertrophy in the subtotally nephrectomized rat. Am J Pathol 90: 201–210

    PubMed  CAS  Google Scholar 

  • ShimamuraT, Heptinstall RH (1963) Experimental pyelonephritis. Nephron dissection of the kidney of experimental chronic pyelonephritis in the rabbit. J Pathol Bacteriol 85: 421–423

    Google Scholar 

  • Shimamura T, Morrison AB (1975) A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am J Pathol 79: 95–101

    PubMed  CAS  Google Scholar 

  • Silva FG, Hogg RJ (1989) IgA nephropathy. In: Fischer CC, Brenner BM (eds) Renal pathology with clinical and functional correlations. Lippencott, Philadelphia, pp 434–493

    Google Scholar 

  • Smith HW (1951) The kidney. Structure and function in health and disease. Oxford University Press, New York, pp 872–878

    Google Scholar 

  • Smith SM, Hoy WE, Cobb L (1989) Low incidence of glomerulosclerosis in normal kidneys. Arch Pathol Lab Med 113: 1253–1255

    PubMed  CAS  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134: 127–136

    Article  PubMed  CAS  Google Scholar 

  • Tanner GA, Evan AP, Summerlin DB, Knopp LC (1989) Glomerular and proximal tubular morphology after single nephron obstruction. Kidney Int 36: 1050–1060

    Article  PubMed  CAS  Google Scholar 

  • Tapia E, Gabbai FB, Calleja C, Franco M, Cermeno JL, Bobadilla NA, Perez JM, Alvarado JA, Herrara-Acosta J (1990) Determinants of renal damage in rats with systemic hypertension and partial renal ablation. Kidney Int 38: 642–648

    Article  PubMed  CAS  Google Scholar 

  • Textor SC (1984) Pathophysiology of renovascular hypertension. Urol Clin North Am 11: 373–381

    PubMed  CAS  Google Scholar 

  • Thurau K, Schnermann J (1965) Die Natriumkonzentration an den Macula densa–Zellen als regulierender Faktor fur das Glomerulumfiltrat ( Mikropunktionsversuche ). Klin Wochenschr 43: 410–413

    Google Scholar 

  • Tribe CR, Heptinstall RH (1964) The juxtaglomerular apparatus in scarred kidneys. An experimental study into the nature of the stimulus causing hyperplasia of the juxtaglomerular apparatus in rats. Br J Exp Pathol 46: 339–347

    Google Scholar 

  • Venkatachalam MA, Bernard DB, Donohue JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the SI, S2 and S3 segments. Kidney Int 14: 31–41

    Article  PubMed  CAS  Google Scholar 

  • Walser M (1988) Progression of renal failure. In: Davison AM (ed) Nephrology, vol II Proceedings of the 10th international congress on nephrology. Baillere Tindall, London, pp 1155–1181

    Google Scholar 

  • Wehrmann M, Bohle A, Held H, Schumm G, Kendziorra H, Pressler H (1990) Long–term prognosis of focal sclerosing glomerulonephritis—an analysis of 250 cases with particular regard to tubulointerstitial changes. Clin Nephrol 33: 115–122

    PubMed  CAS  Google Scholar 

  • Wood JE Jr, Ethridge C (1933) Hypertension with arteriolar and glomerular changes in the albino rat following subtotal nephrectomy. Proc Soc Exp Biol Med 30: 1039–1041

    Google Scholar 

  • Yoshida Y, Fogo A, Ichikawa I (1989) Glomerular hemodynamic changes vs. hypertrophy in experimental glomerular sclerosis. Kidney Int 35: 654–660

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Shiraga H, Yoshida Y, Fogo A, Glick A, Deen WW, Hoyer J, Ichikawa I (1988) “Intact nephrons” as the primary origin of proteinuria in chronic renal disease. Study in the rat model of subtotal nephrectomy. J Clin Invest 82: 1641–1653

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marcussen, N. (1995). Atubular Glomeruli in Chronic Renal Disease. In: Dodd, S.M. (eds) Tubulointerstitial and Cystic Disease of the Kidney. Current Topics in Pathology, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79517-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79517-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79519-0

  • Online ISBN: 978-3-642-79517-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics