Skip to main content

Oral Route of Peptide and Protein Drug Delivery

  • Conference paper

Abstract

Designing means to deliver peptide and protein drugs successfully to the systemic circulation by the oral route has been a challenge to scientists in drug delivery for many years [1]. The barriers to peptide and protein absorption from the gastrointestinal tract are well known. There are the enzymatic and penetration barriers [2–4]. Of the two, the enzymatic barrier historically has received more attention and appears to be the rate-limiting step in the intestinal penetration of small peptides such as leucine enkephalin and its analogs [5]. Numerous investigations have focused on the use of protease inhibitors, notably aprotinin [6–8], soy bean trypsin inhibitor [8–10], and amastatin [5] and on the use of formulations, notably microparticulates [11] to protect the encapsulated peptide and protein drugs from luminal proteases.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee VHL, Dodda-Kashi S, Grass GM, Rubas W (1991) Oral route of peptide and protein drug delivery. In. Lee VHL (ed) Peptide and protein drug delivery. Dekker, New York, pp 691–738

    Google Scholar 

  2. Lee VHL (1990) Protease inhibitors and penetration enhancers as approaches to modify peptide absorption. J Contr Rel 13:213–223

    Article  CAS  Google Scholar 

  3. Lee VHL, Yamamoto A (1990) Penetration and enzymatic barriers to peptide and protein abosrption. Adv Drug Deliv Rev 4:171–207

    Article  CAS  Google Scholar 

  4. Schilling RJ, Mitra AK (1991) Degradation of insulin by trypsin and alpha-chymotrypsin. Pharm Res 8:721–727

    Article  PubMed  CAS  Google Scholar 

  5. Friedman DI, Amidon GL (1991) Oral absorption of peptides: influence of pH and inhibitors on the intestinal hydrolysis of leu-enkephalin and analogues. Pharm Res 8:93–96

    Article  PubMed  CAS  Google Scholar 

  6. Parsons JA, Rafferty B, Stevenson RW, Zanelli JM (1977) Use of protease inhibitors to protect subcutaneously injected peptide hormones against local degradation. Br J Pharmacol 59: 489P-490P

    Google Scholar 

  7. Parsons JA, Rafferty B, Stevenson RW, Zanelli JM (1979) Evidence that protease inhibitors reduce the degradation of parathyroid hormone and calcitonin injected subcutaneously. Br J Phannacol 66:25–32

    CAS  Google Scholar 

  8. Morimoto K, Yamaguchi H, Iwakura Y, Miyazaki M, Nakatani E, Iwamoto T, Ohashi Y, Nakai Y (1991) Effects of proteolytic enzyme inhibitors on the nasal absorption of vasopressin and an analogue. Phann Res 8:1175–1179

    Article  CAS  Google Scholar 

  9. Kidron M, Bar-On J, Berry EM, Ziv E (1982) The absorption of insulin from various regions of the rat intestine. Life Sci 31:2837–2841

    Article  PubMed  CAS  Google Scholar 

  10. Ziv E, Lior O, Kidron M (1987) Absorption of protein via the intestinal wall: a quantitative model. Biochem Phannacol 36:1035–1039

    Article  CAS  Google Scholar 

  11. Damge C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251

    Article  PubMed  CAS  Google Scholar 

  12. Moore JA, Pletcher SA Ross MJ (1986) Absorption enhancement of growth hormone from the gastrointestinal tract of rats. Int J Phann 34:35–43

    Article  CAS  Google Scholar 

  13. Nishihata T, Rytting JH, Kamada A, Higuchi T (1981) Enhanced intestinal absorption of insulin in rats in the presence of sodium 5-methoxysalicylate. Diabetes 30:1065–1067

    Article  PubMed  CAS  Google Scholar 

  14. Peters GE, Hutchinson LEF, Hyde R, McMartin C, Metcalfe SB (1987) Effect of sodium 5-methoxysalicylate on macromolecule absorption and mucosal morphology in a vascularly perfused rat gut preparation in vivo. J Phann Sci 76:857–861

    CAS  Google Scholar 

  15. Takada K, Shibata N, Yoshimura H, Masuda Y, Yoshikawa H, Muranishi S, Oka T (1985) Promotion of the selective lymphatic delivery of cyclosporin A by lipid-surfactant mixed micelles. J Pharmacobio-Dyn 8:320–323

    Article  PubMed  CAS  Google Scholar 

  16. Sekine M, Sasahara K, Kojima T, Hasegawa K, Okada R, Awazu S (1984) Improvement of bioavailability of poorly absorbed drugs. I. Effect of medium chain glyceride base on the rectal absorption of cefmetazole sodium in rats. J Phannacobio-Dyn 7:856–863

    Article  PubMed  CAS  Google Scholar 

  17. Sekine M, Terashima H, Sasahara K, Nishimura K, Okada R, Awazu S (1985) Improvement of bioavailability of poorly absorbed drugs. II. Effect of medium chain glyceride base on the intestinal absorption of cefmetazole sodium in rats and dogs. J Phannacobio-Dyn 8:286–295

    Article  CAS  Google Scholar 

  18. Muranishi S, Muranushi N, Sezaki H (1979) Improvement of absolute bioavailability of normally poorly absorbed drugs: Inducement of the intestinal absorption of streptomycin and gentamicin by lipid-bile salt mixed micelles in rat and rabbit. Int J Phann 2:101–111

    CAS  Google Scholar 

  19. Bocci V, Naldini A, Corradesc F, Lencioni E (1985) Colorectal administration of human interferon-yo Int J Phann 24:109–114

    CAS  Google Scholar 

  20. LeCluyse EL, Appel LE, Sutton SC (1991) Relationship between drug absorption enhancing activity and membrane perturbing effects of acylcamitines. Phann Res 8:84–87

    Article  Google Scholar 

  21. Fix JA, Engle K, Porter PA, Leppert PS, Selk SJ, Gardner CR, Alexander J (1986) Acylcamitines: Drug absorption-enhancing agents in the gastrointestinal tract. Am J Physiol 251: G332-G340

    PubMed  CAS  Google Scholar 

  22. Ferry DM, Butt TJ, Broom MF, Hunter J, Chadwick VS (1989) Bacterial chemotactic oligopeptides and the intestinal mucosal barrier. Gastroenterology 97:61–67

    PubMed  CAS  Google Scholar 

  23. Sutton SC, LeCluyse EL, Cammack L, Fix FA (1992) Enhanced bioavailability of cefoxitin using palmitoyl-L-camitine. I. Enhancer activity in different intestinal regions. Phann Res 9: 191–194

    Article  CAS  Google Scholar 

  24. Smith PL, Wall DA, Gochoco CH, Wilson G (1992) Oral absorption of peptides and proteins. Adv Drug Deliv Rev (8:253–290)

    Article  CAS  Google Scholar 

  25. Shen WC, Wan J, Ekrami H (1992) Enhancement of polypeptide and protein absorption by macromolecular carriers via endocytosis and transcytosis. Adv Drug Deliv Rev 8: 93–113

    Article  CAS  Google Scholar 

  26. Sawchuck RJ, Awni WM (1986) Absorption of cyclosporine from rabbit small intestine in situ. J Phann Sci 75:1151–1156

    Article  Google Scholar 

  27. Jennewein HM, Waldeck F, Konz W (1974) The absorption oftetragastrin from different sites in rats and dogs. Arzneimittelforschung 24:1225–1228

    PubMed  CAS  Google Scholar 

  28. Lundin S, Vilhardt H (1986) Absorption of I-deamino-8-D-arginine vasopressin from different regions of the gastrointestinal tract in rabbits. Acta Endocrinol 112: 457–460

    PubMed  CAS  Google Scholar 

  29. Kohler E, Duberow DM, Drew J, Ribes G, Loubatieres MMM, Mazer N, Gyr K, Berlinger C (1987) Absorption of an aqueous solution of a new synthetic somatostatin analogue administered to man by gavage. Eur J Clin Phannacol 33:167–171

    Article  CAS  Google Scholar 

  30. Grass GM, Morehead WJ (1989) Evidence for site-specific absorption of a novel ACE inhibitor. Phann Res 6:759–765

    Article  CAS  Google Scholar 

  31. Lundin S, Pantzar N, Broeders A, Ohlin M, Westrom BR (1991) Differences in transport rate of oxytocin and vasopressin analogues across proximal and distal isolated segments of the small 1.intestine of the rat. Phann Res 8:1274–1280

    Article  CAS  Google Scholar 

  32. Kompella UB, Lee VHL (1992) Delivery systems for penetration enhancement of peptide and protein drugs: Design considerations. Adv Drug Deliv Rev 8:115–162

    Article  CAS  Google Scholar 

  33. Rubinstein A, Nakar D, Sintov A (1992) Colonic drug delivery: enhanced release of indo- methacin from cross-linked chondroitin matrix in rat cecal content. Pharm Res 9: 276–278

    Article  PubMed  CAS  Google Scholar 

  34. Salyers AA, O’Brien M (1980) Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacterid 143:772–780

    CAS  Google Scholar 

  35. Saffran M, Kumar GS, Savariar C, Burnham JC, Williams F, Neckers DC (1986) A new approach to the oral administration of insulin and other peptide drugs. Science 23:1081–1084

    Article  Google Scholar 

  36. Heringova A, Koldovsky O, Jirosova V, Uher J, Noack R, Freidrich M, Schenk G (1966) Proteolytic and peptidase activities of the small intestine of human fetuses. Gastroenterology 51:1023–1027

    PubMed  CAS  Google Scholar 

  37. Triadou N, Bataille J, Schmitz J (1983) Longitudinal study of the human intestinal brush border membrane proteins. Gastroenterology 85:1326–1332

    PubMed  CAS  Google Scholar 

  38. Shoji Y, Lee VHL (1989) Regional differences in the proteolysis of a renin inhibitor in the G.I. tract of the albino rabbit. Pharm Res 6S:31

    Google Scholar 

  39. Shoji Y, Lee VHL (1989) Prolyl endoprotease (E.C.3.4.21.26) activity in the colon and its role in the degradation of thyrotropin releasing hormone in the albino rabbit. Pharm Res 6S: 31

    Google Scholar 

  40. Buur A, Yamamoto A, Lee VHL (1990) Penetration of 5-fluorouracil and prodrugs across the intestine of the albino rabbit: evidence for shift in absorption site from the upper to the lower region of the gastrointestinal tract by prodrugs. J Contr Rel 14:43–51

    Article  CAS  Google Scholar 

  41. Narawane M, Podder SK, Bundgaard H, Lee VHL (1993) Segmental differences in drug permeability, esterase activity and ketone reductase activity in the albino rabbit intestine. J. Drug Targeting 1:29–39

    Article  CAS  Google Scholar 

  42. Conradi RA, Hilgers AR, Ho NFH, Burton PS (1991) The influence of peptide structure on transport across CaCO-2 cells. Pharm Res 8:1453–1460

    Article  PubMed  CAS  Google Scholar 

  43. Cereijido M, Meza I, Martinez-Palomo A (1981) Occluding junctions in cultured epithelial monolayers. Am J Physiol 240:C96-C102

    PubMed  CAS  Google Scholar 

  44. Madara JL, Dharmsathaphorn K (1985) Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol 101:2124–2133

    Article  PubMed  CAS  Google Scholar 

  45. Yen WC, Lee VHL (1991) Influence of collagenase on the intestinal transport of a pentapeptide. Proceed Intern Symp Control Rel Bioact Mater 18:95

    Google Scholar 

  46. Dolye JW, Wolfe MM, McGuigan JE (1984) Hepatic clearance of gastrin and cholecystokinin peptides. Gastroenterology 87:60–68

    Google Scholar 

  47. Gores GJ, LaRusso NF, Miller LJ (1986) Hepatic processing of cholecystokinin peptides. I. Structural specificity and mechanism of hepatic extraction. Am J Physiol 250:G344-G349

    PubMed  CAS  Google Scholar 

  48. Sakamoto T, Fujimura M, Newman J, Zhu XG, Greeley GH, Thompson JC (1985) Comparison of hepatic elimination of different forms of cholecystokinin in dogs. J Clin Invest 75:280–285

    Article  PubMed  CAS  Google Scholar 

  49. Hunter EB, Powers SP, Kost LJ, Pinon DI, Miller LJ, LaRusso NF (1990) Physiochemical determinants in hepatic extraction of small peptides. Hepatology 12:76–82

    Article  PubMed  CAS  Google Scholar 

  50. Dobrinska MR (1989) Enterohepatic circulation of drugs. J Clin Phar 29:577–580

    CAS  Google Scholar 

  51. Renston RH, Maloney DG, Jones AL (1980) Bile secretory apparatus: evidence for a vesicular transport mechanism for proteins in the rat, using horseradish peroxidase and (125I) insulin. Gastroenterology 78:1373–1388

    PubMed  CAS  Google Scholar 

  52. Renston RH, Jones AL, Christansen WD (1980) Evidence for a vesicular transport mechanism in hepatocytes for biliary secretion of immunoglobulin A. Science 208:1276–1278

    Article  PubMed  CAS  Google Scholar 

  53. Hinton RH, Dobrota M, Mullock BM (1980) Haptoglobin-mediated transfer of haemoglobin from serum into bile. FEBS Lett 112:247–250

    Article  PubMed  CAS  Google Scholar 

  54. Lee VHL (1990) Mechanisms and facilitation of corneal drug penetration. J Contr Rel 11: 79–90

    Article  CAS  Google Scholar 

  55. Thomas P, Toth CA, Zamcheck N (1982) The mechanism of biliary excretion of ai-acid glycoprotein in the rat: evidence for a molecular weight-dependent, nonreceptor-mediated pathway. Hepatology 2:800–803

    Article  PubMed  CAS  Google Scholar 

  56. Yen WCY, Lee VHL (1994) Paracellular transport of a proteolytically labile pentapeptide across the colonic and other intestinal segments of the albino rabbit: implications for peptide drag design. J Contr Rel 28:97–109

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, V.H.L. (1995). Oral Route of Peptide and Protein Drug Delivery. In: Absorption of Orally Administered Enzymes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79511-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79511-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79513-8

  • Online ISBN: 978-3-642-79511-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics