Dynamics of Electric Field Domains in Superlattices

  • L. L. Bonilla
Part of the Springer Proceedings in Physics book series (SPPHY, volume 79)

Abstract

A discrete drift model of resonant tunneling transport in weakly-coupled GaAs quantum-well structures under laser illumination is introduced and analyzed. Results include explanations (via formation of electric field domains) of the oscillatory shape of the I-V diagram leading to multistability and hysteresis between stationary electric-field profiles for both doped and undoped superlattices under strong laser illumination. Moreover, the dynamics of electric-field domains and domain walls in our model account for damped and undamped time-dependent oscillations of the current in a dc voltage bias situation, with the laser photoexcitation acting as a damping factor. Our results agree with time-resolved photoluminescence and photocurrent experiments. An asymptotic analysis of the continuum limit of our discrete model shows that these current oscillations are due to the formation, motion, annihilation and regeneration of negatively charged domain walls on the superlattice. The situation is reminiscent of the classical Gunn-effect oscillations in bulk semiconductors due to dipole-domain dynamics, and in fact our present asymptotic analysis is an extension and adaptation of previous work of ours on the Gunn effect.

Keywords

Recombination Coherence GaAs Explosive Lime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1.1]
    L. Esaki, L.L. Chang: Phys. Rev. Lett. 33, 495 (1974)CrossRefGoogle Scholar
  2. [1.2]
    H.T. Grahn, H. Schneider, K. von Klitzing: Phys. Rev. B 41, 2890 (1990)CrossRefGoogle Scholar
  3. [1.3]
    S.-H. Kwok: Novel Electric Field Effects in GaAs-(A1,Ga)As Superlattices. Ph.D. Thesis, University of Michigan, Ann Arbor (1994)Google Scholar
  4. see also S.-H. Kwok, T.C. Norris, L.L. Bonilla, J. Galin, J.A. Cuesta, F.C. Martinez, J.M. Molera, H.T. Grahn, K. Ploog, R. Merlin: unpublished (1994)Google Scholar
  5. [1.4]
    See for instance the special issue of Physics Today, June (1993)Google Scholar
  6. [1.5]
    R.F. Kazarinov, R.A. Suris: Soy. Phys.—Semicond. 6, 120 (1972)Google Scholar
  7. [1.6]
    B. Laikhtman: Phys. Rev. B 44, 11260 (1991)CrossRefGoogle Scholar
  8. [1.7]
    B. Laikhtman, D. Miller: Phys. Rev. B 48, 5395 (1993) and preprint (1994)Google Scholar
  9. [1.8]
    F. Prengel, A. Wacker, E. Schöll: Phys. Rev. B 50, 1705 (1994)CrossRefGoogle Scholar
  10. [1.9]
    L.L. Bonilla, J. Galin, J. Cuesta, F.C. Martinez, J.M. Molera: Phys. Rev. B 50, 8644 (1994)CrossRefGoogle Scholar
  11. [1.10]
    H.T. Grahn, W. Müller, K. von Klitzing, K. Ploog: Surface Sci. 267, 579 (1992)Google Scholar
  12. [1.11]
    J. Kastrup, H.T. Grahn, K. Ploog, F. Prengel, A. Wacker, E. Schöll: Appl. Phys. Lett. 65, 1808 (1994)CrossRefGoogle Scholar
  13. [1.12]
    H.T. Grahn: private communication (June 1994)Google Scholar
  14. [1.13]
    This boundary condition generalizes that used in [1.9] and in [1.11], c = O. A small charge build-up on the first QW due to the excess doping before the SL is allowed. Then there is a stationary solution with an almost uniform field profile that differs from (1.7) only on the first few QWs.Google Scholar
  15. [1.14]
    L.L. Bonilla, J. Galin, M. Kindelân, M. Moscoso: unpublished (1994)Google Scholar
  16. [1.15]
    M.P. Shaw, H.L. Grubin, P.R. Solomon: The Gunn-Hilsum Effect (Academic Press, New York 1979 ); M.P. Shaw, V.V. Mitin, E. Schöll, H.L. Grubin: The Physics of Instabilities in Solid State Electron Devices ( Plenum Press, New York 1992 )Google Scholar
  17. [1.16]
    F.J. Higuera, L.L. Bonilla: Physica D 57, 161 (1992)CrossRefGoogle Scholar
  18. [1.17]
    S.W. Teitsworth: Appl. Phys. A 48, 127 (1989); L.L. Bonilla, S.W. Teitsworth: Physica D 50, 545 (1991)CrossRefGoogle Scholar
  19. [1.18]
    L.L. Bonilla: Phys. Rev. B 45, 11642 (1992)CrossRefGoogle Scholar
  20. [1.19]
    I.R. Cantalapiedra, L.L. Bonilla, M.J. Bergmann, S.W. Teitsworth: Phys. Rev. B 48, 12278 (1993); L.L. Bonilla, I.R. Cantalapiedra, M. J. Bergmann, S.W. Teitsworth: Semicond. Sci. Technol. 9, 599 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • L. L. Bonilla
    • 1
  1. 1.Escuela Politécnica SuperiorUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations