Representations of the Electromagnetic Field

  • D. F. Walls
  • G. J. Milburn
Part of the Springer Study Edition book series (SSE)


A full description of the electromagnetic field requires a quantum statistical treatment. The electromagnetic field has an infinite number of modes and each mode requires a statistical description in terms of its allowed quantum states. However, as the modes are described by independent Hilbert spaces, we may form the statistical description of the entire field as the product of the distribution function for each mode. This enables us to confine our description to a single mode without loss of generality.


Coherent State Density Operator Wigner Function Wigner Distribution Photon Number Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    R.J. Glauber: Phys. Rev. 131, 2766 (1963)MathSciNetADSCrossRefGoogle Scholar
  2. 4.2
    E.C.G. Sudarshan: Phys. Rev. Lett. 10, 277 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 4.3
    J.R. Klauder, E.C.G. Sudarshan: Fundamentals of Quantum Optics (Benjamin, New York 1968)Google Scholar
  4. 4.4
    E.P. Wigner: Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  5. 4.5
    P.D. Drummond, C.W. Gardiner: J. Phys. A13, 2353 (1980)MathSciNetADSGoogle Scholar
  6. 4.6
    S.L. Braunstein, CM. Caves and G.J. Milburn: Phys. Rev. A 43, 1153 (1991)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • D. F. Walls
    • 1
  • G. J. Milburn
    • 2
  1. 1.University of AucklandAucklandNew Zealand
  2. 2.Physics DepartmentUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations