The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites

  • Thomas W. Traut
Part of the EJB Reviews 1994 book series (EJB REVIEWS, volume 1994)


From an analysis of current data on 16 protein structures with defined nucleotide-binding sites consensus motifs were determined for the peptide segments that form such nucleotide-binding sites. This was done by using the actual residues shown to contact ligands in the different protein structures, plus an additional 50 sequences for various kinases. Three peptide segments are commonly required to form the binding site for ATP or GTP. Binding motif Kinase-1 a is found in almost all sequences examined, and functions in binding the phosphates of the ligand. Variant versions, comparable to Kinase-1 a, are found in a subset of proteins and appear to be related to unique functions of those enzymes. Motif Kinase-2 contains the conserved aspartate that coordinates the metal ion on Mg-ATP. Motif Kinase-3 occurs in at least four versions, and functions in binding the purine base or the pentose. Two protein structures show ATP-binding at a separate regulatory site, formed by the motifs Regulatory-1 and Regulatory-2. Structures for adenylate kinase and guanylate kinase show three different sequence motifs that form the binding site for a nucleoside monophosphate (NMP). NMP-1 and NMP-2 bind to the pentose and phosphate of the bound ligand. NMP-1 is found in almost all the kinases that phosphorylate AMP, CMP, GMP, dTMP, or UMP. NMP-3 a is found in kinases for AMP, GMP, and UMP, while NMP-3b binds only GMP. For the binding of NTPs, three distinct types of nucleotide-binding fold structures have been described. Each structure is associated with a particular function (e.g. transfer of the γ-phosphate, or of the adenylate to an acceptor) and also with a particular spatial arrangement of the three Kinase segments evident in the linear sequence for the protein.


Regulatory Site Adenylate Kinase Consensus Motif Phosphoglycerate Kinase tRNA Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





elongation factor






tRNA synthetase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1, 945–951.PubMedGoogle Scholar
  2. 2.
    Pai, E. F., Sachsenheimer, W., Schirmer, R. H. & Schulz, G. D. (1977) Substrate positions and induced-fit in crystalline adenylate kinase, J. Mol. Biol. 114, 37–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Möller, W. & Amons, R. (1985) Phosphate-binding sequences in nucleotide-binding proteins, FEBS Lett. 186, 1–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Fry, D. C., Kuby, S. A. & Mildvan, A. S. (1985) NMR studies of the MgATP-binding site of adenylate kinase and of a 45- residue peptide fragment of the enzyme, Biochemistry 24, 4680–4694.PubMedCrossRefGoogle Scholar
  5. 5.
    Fry, D. C., Kuby, S. A. & Mildvan, A. S. (1986) ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F t-ATPase, and other nucleotide-binding proteins, Proc. Natl Acad. Sci. USA 83, 907–911.PubMedCrossRefGoogle Scholar
  6. 6.
    Chin, D. T., Goff, S. A., Webster, T., Smith, T. & Goldberg, A. L. (1988) Sequence of the Ion gene in Escherichia coli. A heat-shock gene which encodes the ATP-dependent protease La, J. Biol. Chem. 263, 11718–11728.PubMedGoogle Scholar
  7. 7.
    Black, M. E. & Hruby, D. E. (1992) Site-directed mutagenesis of a conserved domain in vaccinia virus thymidine kinase, J. Biol. Chem. 267, 6801–6896.PubMedGoogle Scholar
  8. 8.
    Otsuka, H. & Kit, S. (1984) Nucleotide sequence of the marmo set herpesvirus thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide, Virology 135, 316–330.PubMedCrossRefGoogle Scholar
  9. 9.
    Dreusicke, D., Karplus, P. A. & Schulz, G. E. (1988) Refined structure of porcine cytosolic adenylate kinase at 2.1 A resolution, J.Mol. Biol. 199, 359–374.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsai, M.-D. & Yan, H. (1991) Mechanism of adenylate kinase: site-directed mutagenesis versus X-ray and NMR, Biochemistry 30, 6806–6818.PubMedCrossRefGoogle Scholar
  11. 11.
    Hanks, S. H., Quinn, A. M. & Hunter, T. (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains, Science 241, 42–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Devereux, J., Haeberli, P. & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12, 387–395.PubMedCrossRefGoogle Scholar
  13. 13.
    Carter, C. W. Jr (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases, Annu. Rev. Biochem. 62, 715–748.PubMedCrossRefGoogle Scholar
  14. 14.
    Hellinga, H. W. & Evans, P. R. (1987) Mutation in the active site of Escherichia coli phosphofructokinase, Nature 327, 437–439.PubMedCrossRefGoogle Scholar
  15. 15.
    Shirakihara, Y. & Evans, P. R. (1988) Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products, J. Mol. Biol. 204, 973–994.PubMedCrossRefGoogle Scholar
  16. 16.
    Schirmer, T. & Evans, P. R. (1990) Structural basis of the allosteric behaviour of phosphofructokinase, Nature 343, 140–145.PubMedCrossRefGoogle Scholar
  17. 17.
    Creighton, T. E. (1983) Proteins: structures and molecular properties, p. 235, W. H. Freeman, New York.Google Scholar
  18. 18.
    Egner, U., Tomasselli, A. G. & Schulz, G. E. (1987) Structure of the complex of yeast adenylate kinase with the inhibitor P1 P5-di(adenosine-5’-)pentaphosphate at 2.6A resolution, J. Mol. Biol. 195, 649–658.PubMedCrossRefGoogle Scholar
  19. 19.
    Tong, L., De Vos, A. M., Milbum, M. V. & Kim, S.-H. (1991) Crystal structures at 2. 2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP, J. Mol. Biol. 217, 503–516.PubMedCrossRefGoogle Scholar
  20. 20.
    Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. (1990) Atomic structure of the actin: DNAse I complex, Nature 347, 37–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng, N., Payne, R. C. & Traut, T. W. (1986) Regulation of uridine kinase. Evidence for a regulatory site, J. Biol. Chem. 261, 13006–13012.PubMedGoogle Scholar
  22. 22.
    Datta, N. S., Shewach, D. S., Hurley, M. C., Mitchell, B. S. & Fox, I. H. (1989) Human T-lymphoblast deoxycytidine kinase: purification and properties, Biochemistry 28, 114–123.PubMedCrossRefGoogle Scholar
  23. 23.
    La Cour, T. F. M., Nyborg, J., Thirup, S. & Clark, B. F. C. (1985) Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X- ray crystallography, EMBO J. 4, 2385–2388.PubMedGoogle Scholar
  24. 24.
    Clark, B. F. C., Kjelgaard, M., La Cour, T. F. M., Thirup, S. & Nyborg, J. (1990) Structural determination of the functional sites of E. coli elongation factor Tu, Biochim. Biophys. Acta 1050,203–208.PubMedGoogle Scholar
  25. 25.
    Pai, E. M., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W. & Wittinghofer, A. (1990) Refined crystal stmcture of the triphosphate conformation of H-ras p21 at 1.35A resolution: implications for the mechanism of GTP hydrolysis, EMBO J. 8, 2351–2359.Google Scholar
  26. 26.
    Privé, G. G., Milbum, M. V., Tong, L., De Vos, A. M., Yamaizumi, Z., Nishimura, S. & Kim, S.-H. (1992) X-ray crystal stmctures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis, Proc. Natl Acad. Sci. USA 89, 3649–3653.PubMedCrossRefGoogle Scholar
  27. 27.
    Dever, T. E., Glynias, M. J. & Merrick, W. C. (1987) GTP-binding domain: three consensus sequence elements with distinct spacing, Proc. Natl Acad. Sci. USA 84, 1814–1818.PubMedCrossRefGoogle Scholar
  28. 28.
    Müller, C. W. & Schulz, G. E. (1992) Stmcture of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution, J. Mol. Biol. 224, 159–177.PubMedCrossRefGoogle Scholar
  29. 29.
    Milner-White, E. J., Coggins, J. R. & Anton, I. A. (1991) Evidence for an ancestral core stmcture in nucleotide-binding proteins with the type A motif, J. Mol. Biol. 221, 751–754.PubMedCrossRefGoogle Scholar
  30. 30.
    Jumak, F., Heffron, S., Schick, B. & Delaria, K. (1990) Three dimensional models of the GDP and GTP forms of the guanine nucleotide domains of Escherichia coli elongation factor Tu, Biochim. Biophys. Acta 1050, 209–214.Google Scholar
  31. 31.
    Banks, R. D., Blake, C. C. F., Evans, P. R., Haser, R., Rice, D. W., Hardy, G. W., Merett, M. & Phillips, A. W. (1979) Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme, Nature 279, 773–777.PubMedCrossRefGoogle Scholar
  32. 32.
    Watson, H. C., Walker, N. P. C., Shaw, P. J., Bryant, T. N., Wendell, P. L., Fothergill, L. A., Perkins, R. E., Conroy, S. A., Dobson, M. J., Tuite, M. F., Kingsman, A. J. & Kingsman, S. M. (1982) Sequence and structure of yeast phosphoglycerate kinase, EMBO J. 1, 1635–1640.PubMedGoogle Scholar
  33. 33.
    Joäo, H. C. & Williams, R. J. P. (1993) The anatomy of a kinase and the control of phosphotransfer, Eur. J. Biochem. 216, 1–18.PubMedCrossRefGoogle Scholar
  34. 34.
    Brunie, S., Zelwer, C. & Risler, J.-L. (1990) Crystallographic study at 2.5 Â resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP, J. Mol. Biol. 216, 411–424.PubMedCrossRefGoogle Scholar
  35. 35.
    Rould, M. A., Perona, J. J., Söll, D. & Steitz, T. A. (1989) Structure of E. coli glutaminyl-tRNA synthetases complexed with tRNAGln and ATP at 2.8Â resolution, Science 246, 1135–1142.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim, K. H., Pan, Z., Honzatko, R. B., Ke, H.-M. & Lipscomb, W. N. (1987) Structural asymmetry in the CTP-liganded form of aspartate carbamoyltransferase from Escherichia coli, J. Mol. Biol. 196, 853–875.PubMedCrossRefGoogle Scholar
  37. 37.
    Krause, K. L., Voltz, K. W. & Lipscomb, W. N. (1987) 2.5 Â Structure of aspartate carbamoyltransferase complexed with the bisubstrate analog 7V-(phosphonacetyl)-L-aspartate, J. Mol. Biol. 193, 527–553.PubMedCrossRefGoogle Scholar
  38. 38.
    Stevens, R. C., Gouaux, J. E. & Lipscomb, W. N. (1990) Structural consequences of effector binding to the T state of aspartate carbamoyltransferase: crystal structures of the unligated and ATP- and CTP-complexed enzymes at 2.6 A resolution, Biochemistry 29, 7691–7701.PubMedCrossRefGoogle Scholar
  39. 39.
    Banerjee, A., Levy, H. R., Levy, G. C. & Chan, W. W.-C. (1985) Conformations of bound nucleoside triphosphates effectors in aspartate transcarbamylase. Evidence for the London-Schmidt model by transferred nuclear Overhauser effect, Biochemistry 24, 1593–1598.PubMedCrossRefGoogle Scholar
  40. 40.
    Okazaki, R. & Komberg, A. (1964) Deoxythymidine kinase of Escherichia coli: II. Kinetics and feedback control, J. Biol. Chem. 239, 275–284.PubMedGoogle Scholar
  41. 41.
    Traut, T. W. (1994) Dissociation of enzyme oligomers: a mechanism for allosteric regulation, CRC Crit. Rev. Biochem. Mol. Biol., in the press.Google Scholar
  42. 42.
    Saraste, M., Sibbald, P. R. & Wittinghofer, A. (1990) The P- loop - a common motif in ATP- and GTP-binding proteins, Trends Biochem. Sci. 15, 430–434.PubMedCrossRefGoogle Scholar
  43. 43.
    Gorbalenya, A. E. & Koonon, E. V. (1990) Superfamily of UvrA-related NTP-binding proteins. Implications for rational classifications of recombinant/repair systems, J. Mol. Biol. 213, 583–591.PubMedCrossRefGoogle Scholar
  44. 44.
    Rozen, F., Pelletier, J., Trachsel, H. & Sonenberg, N. (1989) A lysine substitution in the ATP-binding site of eucaryotic initiation factor 4 A abrogates nucleotide-binding activity, Mol. Cell. Biol. 9, 4061–4063.PubMedGoogle Scholar
  45. 45.
    Weinmaster, G., Zoller, M. J. & Pawson, T. (1986) A lysine in the ATP-binding site of P130gag fps is essential for protein- tyrosine kinase activity, EMBO J. 5, 69–76.PubMedGoogle Scholar
  46. 46.
    Knighton, D. R., Zheng, J., Ten Eyck, L. F., Ashford, V. A., Xuong, N.-H., Taylor, S. S. & Sowadski, J. M. (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase, Science 253, 407–414.PubMedCrossRefGoogle Scholar
  47. 47.
    Traut, T. W. (1986) Are proteins made of modules? Mol. Cell. Biochem. 70, 3–10.PubMedCrossRefGoogle Scholar
  48. 48.
    Traut, T. W. (1988) Do exons code for structural or functional units in proteins? Proc. Natl Acad. Sci. USA 85, 2944–2948.PubMedCrossRefGoogle Scholar
  49. 49.
    Gilbert, W. (1978) Why genes in pieces? Nature 271, 501.PubMedCrossRefGoogle Scholar
  50. 50.
    Blake, C. C. F. (1978) Do genes-in-pieces imply proteins-in-pieces? Nature 273, 267.CrossRefGoogle Scholar
  51. 51.
    Blake, C. C. F. (1979) Exons encode protein functional units, Nature 277, 598.PubMedCrossRefGoogle Scholar
  52. 52.
    Doolittle, R. F., Johnson, M. S., Husain, I., Van Houten, B., Thomas, D. C. & Sancar, A. (1986) Domainal evolution of a prokaryotic DNA repair protein and its relationship to active- transport proteins, Nature 323, 451–453.PubMedCrossRefGoogle Scholar
  53. 53.
    Stehle, T. & Schulz, G. E. (1990) Three-dimensional structure of the complex of guanylate kinase from yeast with its substrate GMP, J. Mol. Biol. 211, 249–254.PubMedCrossRefGoogle Scholar
  54. 54.
    Story, R. M. & Steitz, T. A. (1992) Structure of the recA protein-ADP complex, Nature 355, 374–376.PubMedCrossRefGoogle Scholar
  55. 55.
    Brick, P., Bhat, T. N. & Blow, D. M. (1988) Structure of tyrosyl- tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate, J. Mol. Biol. 208, 83–98.CrossRefGoogle Scholar
  56. 56.
    Fersht, A. R., Knill-Jones, J. W., Bedouelle, H. & Winter, G. (1988) Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl- tRNA synthetase: a mobile loop envelopes the transition state in the induced-fit mechanism, Biochemistry 27, 1581–1587.PubMedCrossRefGoogle Scholar
  57. 57.
    Diedrichs, K. & Schulz, G. E. (1990) The refined structure of the complex between adenylate kinase from beef heart mitochondrial matrix and its substrate AMP at 1.85 A resolution, J. Mol. Biol. 211, 249–254.CrossRefGoogle Scholar

Copyright information

© FEBS 1994

Authors and Affiliations

  • Thomas W. Traut
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations