Skip to main content

X-ray crystal structures of cytosolic glutathione S-transferases

Implications for protein architecture, substrate recognition and catalytic function

  • Chapter
EJB Reviews 1994

Part of the book series: EJB Reviews 1994 ((EJB REVIEWS,volume 1994))

  • 111 Accesses

Abstract

Crystal structures of cytosolic glutathione S-transferases (EC 2.5.1.18), complexed with glutathione or its analogues, are reviewed. The atomic models define protein architectural relationships between the different gene classes in the superfamily, and reveal the molecular basis for substrate binding at the two adjacent subsites of the active site. Considerable progress has been made in understanding the mechanism whereby the thiol group of glutathione is destabilized (lowering its pK a) at the active site, a rate-enhancement strategy shared by the soluble glutathione S-trans- ferases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

GST:

glutathione S-transferase

pGSTP1-1, hGSTA1-1, rGSTM1-1 etc.:

acronyms for the glutathione S-transferases (GST)

p:

porcine

h:

human

r:

rat

b:

bovine

m:

mouse

rb:

rabbit

c:

chicken

gp:

guinea pig

P:

gene class pi

A:

gene class alpha

M:

gene class mu respectively

1-1:

indicates a dimer of two type-1 subunits

GSH:

reduced glutathione

P1, P2 etc. and G1, G2 etc.:

designate peptide functional groups in glutathione and the corresponding G-site ligands of the glutathione 5-transferases, respectively

G-site:

glutathione-binding site

H-site:

hydrophobic electrophile-binding site.

References

  1. Jacoby, W. B. & Ziegler, D. M. (1990) The enzymes of detoxication, J. Biol. Chem. 265, 20715–20718.

    Google Scholar 

  2. Armstrong, R. N. (1991) Glutathione 5-transferases: reaction mechanism, structure, and function, Chem. Res. Toxicol. 4, 131–140.

    PubMed  CAS  Google Scholar 

  3. Ishikawa, T. (1992) The ATP-dependent glutathione 5-conju gate export pump, Trends Biochem. Sci. 17, 463–468.

    PubMed  CAS  Google Scholar 

  4. Mannervik, B., Alin, P., Guthenberg, C., Jensson, H., Tahir, M. K., Warholm, M. & Jomvall, H. (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties, Proc. Natl Acad. Sci. USA 82, 7202–7206.

    PubMed  CAS  Google Scholar 

  5. Persson, B., Jomvall, H., Alin, P. & Mannervik, B. (1988) Stmctural classes of glutathione transferases: distinctions between isoenzymes and enzymes, Protein Seq. Data Anal. 1, 183–186.

    PubMed  CAS  Google Scholar 

  6. Meyer, D. J., Coles, B., Pemble, S. E., Gilmore, K. S., Fraser, G. M. & Ketterer, B. (1991) Theta, a new class of glutathione transferases purified from rat and man, Biochem. J. 274, 409–414.

    PubMed  CAS  Google Scholar 

  7. DeJong, J. L., Morgenstern, R., Jomvall, H., DePierre, J. W. & Tu, C.-P. D. (1988) Gene expression of rat and human microsomal glutathione 5-transferases, J. Biol. Chem. 263, 8430–8436.

    PubMed  CAS  Google Scholar 

  8. Pemble, S. E. & Taylor, J. B. (1992) An evolutionary perspective on glutathione transferases inferred from class-theta glutathione transferase cDNA sequences, Biochem. J. 287, 957–963.

    PubMed  CAS  Google Scholar 

  9. Mannervik, B., Awasthi, Y. C., Board, P. G., Hayes, J. D., Di Ilio, C., Ketterer, B., Listowsky, I., Morgenstern, R., Muramatsu, M., Pearson, W. R., Pickett, C. B., Sato, K., Widersten, M. & Wolf, C. R. (1992) Nomenclature for human glutathione transferases, Biochem. J. 282, 305–306.

    PubMed  CAS  Google Scholar 

  10. Ketterer, B., Tan, K. H., Meyer, D. J. & Coles, B. (1987) Glutathione transferases: a possible role in the detoxication of DNA and lipid hydroperoxides, in Glutathione S-transferases and carcinogenesis (Mantle, T. J., Pickett, C. B. & Hayes, J. D., eds) p. 149, Taylor & Francis, London.

    Google Scholar 

  11. Benson, A. M., Talalay, P., Keen, J. H. & Jakoby, W. B. (1977) Relationship between the soluble glutathione-dependent A 5-3- ketosteroid isomerase and the glutathione 5-transferases of the liver, Proc. Natl Acad. Sci. USA, 74, 158–162.

    PubMed  CAS  Google Scholar 

  12. Tsuchida, S., Izumi, T., Shimizu, T., Ishikawa, T., Hatayama, I., Satoh, K. & Sato, K. (1987) Purification of a new acid glutathione S-transferase, GST-Yn1Yn1 with a high leuko- triene-C4 synthase activity from rat brain, Eur. J. Biochem. 170, 159–164.

    PubMed  CAS  Google Scholar 

  13. Listowsky, I. (1993) Glutathione 5-transferases: intracellular binding, detoxification, and adaptive responses, in Hepatic transport and bile secretion: physiology and pathophysiology (Tavoloni, N. & Berk, P. D., eds) pp. 397–405, Raven Press, New York.

    Google Scholar 

  14. Hayes, J. D. & Wolf, C. R. (1990) Molecular mechanisms of dmg resistance, Biochem. J. 272, 281–295.

    PubMed  CAS  Google Scholar 

  15. Mannervik, B. & Danielson, U. H. (1988) Glutathione transferases : structure and catalytic activity, CRC Crit Rev. Biochem. Mol. Biol. 23, 283–337.

    CAS  Google Scholar 

  16. Boyer, T. D. (1989) The glutathione 5-transferases: an update, Hepatology 9, 486–496.

    PubMed  CAS  Google Scholar 

  17. Listowsky, I., Abramovitz, M., Homma, H. & Niitsu, Y. (1988) Intracellular binding and transport of hormones and xenobiotics by glutathione 5-transferases, Drug Metab. Rev. 19, 305–318.

    PubMed  CAS  Google Scholar 

  18. Pickett, C. B. & Lu, A. Y. H. (1989) Glutathione 5-transferases: gene stmcture, regulation, and biological function, Annu. Rev. Biochem. 58, 743–764.

    PubMed  CAS  Google Scholar 

  19. Rushmore, T. H. & Pickett, C. B. (1993) Glutathione 5-transferases, stmcture, regulation, and therapeutic implications, J. Biol. Chem. 268, 11475–11478.

    PubMed  CAS  Google Scholar 

  20. Daniel, V. (1993) Glutathione 5-transferases - gene stmcture and regulation of expression, CRC Crit Rev. Biochem. Mol. Biol. 28, 173–208.

    CAS  Google Scholar 

  21. Hayes, P. C., Bouchier, I. A. D. & Beckett, G. J. (1991) Glutathione 5-transferases in humans in health and disease, Gut 32, 813–818.

    PubMed  CAS  Google Scholar 

  22. Tsuchida, S. & Sato, K. (1992) Glutathione transferases and cancer, CRC Crit. Rev. Biochem. Mol. Biol. 27, 337–384.

    CAS  Google Scholar 

  23. Waxman, D. J. (1990) Glutathione 5-transferases: role in alkylating agent resistance and possible target for modulation chemotherapy - a review, Cancer Res. 50, 6449–6454.

    PubMed  CAS  Google Scholar 

  24. Morrow, C. S. & Cowan, K. H.(1990) Glutathione 5-transferases and dmg resistance, Cancer Cells 2, 15–22.

    PubMed  CAS  Google Scholar 

  25. Coles, B. & Ketterer, B. (1990) The role of glutathione and glutathione transferases in chemical carcinogenesis, CRC Crit. Rev. Biochem. Mol. Biol. 25, 47–70.

    CAS  Google Scholar 

  26. Sesay, M. A., Ammon, H. L. & Armstrong, R. N. (1987) Crystallization and a preliminary X-ray diffraction study of isoenzyme 3–3 of glutathione 5-transferase from rat liver, J. Mol. Biol. 197, 377–378.

    PubMed  CAS  Google Scholar 

  27. Cowan, S. W., Bergfors, T., Jones, T. A., Tibbelin, G., Olin, B., Board, P. G. & Mannervik, B. (1989) Crystallization of GST2, a human class alpha glutathione transferase, J. Mol. Biol. 208, 369–370.

    PubMed  CAS  Google Scholar 

  28. Fu, J.-H., Rose, J., Chung, Y.-J., Tam, M. F. & Wang, B. C. (1990) Crystals of isoenzyme 3–3 of rat liver glutathione 5- transferase with and without inhibitor, Acta Crystallogr. B47, 813–814.

    Google Scholar 

  29. Schaeffer, J., Gallay, O. & Ladenstein, R. (1988) Glutathione transferase from bovine placenta. Preparation, biochemical characterization, crystallization and preliminary crystallo- graphic analysis of a neutral class π enzyme, J. Biol. Chem. 263, 17405–17411.

    CAS  Google Scholar 

  30. Parker, M. W., LoBello, M. & Federici, G. (1990) Crystallization of glutathione 5-transferase from human placenta, J. Mol. Biol. 213, 221–222.

    PubMed  CAS  Google Scholar 

  31. Dirr, H. W., Mann, K., Huber, R., Ladenstein, R. & Reinemer, P. (1991) Class π glutathione 5-transferase from pig lung. Purification, biochemical characterization, primary stmcture and crystallization, Eur. J. Biochem. 196, 693–698.

    PubMed  CAS  Google Scholar 

  32. Trottein, F., Vaney, M.-C., Bachet, B., Pierce, R.-J., Colloc’h, N., Lecocq, J.-P, Capron, A. & Momon, J.-P. (1992) Crystallization and preliminary X-ray diffraction studies of a protective cloned 28 kDa glutathione 5-transferase from Schistosoma mansoni, J. Mol. Biol. 224, 515–518.

    PubMed  CAS  Google Scholar 

  33. McPherson, A. (1990) Current approaches to macromolecular crystallization, Eur. J. Biochem. 189, 1–23.

    PubMed  CAS  Google Scholar 

  34. Graminski, G. F., Zhang, P., Sesay, M. A., Ammon, H. L. & Armstrong, R. N. (1989) Formation of the l-(5-glutathion- yl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione 5-transferase: evidence for enzymatic stabilization of σ-complex intermediates in nucleophilic aromatic substitution reactions, Biochemistry 28, 6252–6258.

    PubMed  CAS  Google Scholar 

  35. Reinemer, P., Dirr, H. W., Ladenstein, R., Schaeffer, J., Gallay, O. & Huber, R. (1991) The three-dimensional stmcture of class π glutathione 5-transferase in complex with glutathione sulfonate at 2.3 Â resolution, EMBO J. 10, 1997–2005.

    PubMed  CAS  Google Scholar 

  36. Blundell, T. L. & Johnson, L. N. (1976) Protein crystallography, Academic Press, New York.

    Google Scholar 

  37. Ji, X., Zhang, P., Armstrong, R. N. & Gilliland, G. L. (1992) A three-dimensional stmcture of a glutathione 5-transferase from the mu gene class. Stmctural analysis of the binary complex of isoenzyme 3–3 and glutathione at 2.2 Â resolution, Biochemistry 57, 10169–10184.

    Google Scholar 

  38. Reinemer, P., Dirr, H. W., Ladenstein, R., Huber, R., Lo Bello, M., Federici, G. & Parker, M. W. (1992) Three-dimensional stmcture of class π glutathione 5-transferase from human placenta in complex with 5-hexylglutathione at 2.8 A resolution, J. Mol. Biol. 227, 214–226.

    PubMed  CAS  Google Scholar 

  39. Sinning, I., Kleywegt, G. J., Cowan, S. W., Reinemer, R, Dirr, H. W., Huber, R., Gilliland, G. L., Armstrong, R. N., Ji, X., Board, R G., Olin, B., Mannervik, B. & Jones, T. A. (1993) Structure determination and refinement of human class alpha glutathione 5-transferase Al-1, and a comparison with the mu and pi class enzymes, J. Mol. Biol. 232, 192–212.

    PubMed  CAS  Google Scholar 

  40. Forest, K. & Schutt, C. (1992) Protein engineering for structure determination, Curr. Opin. Struct. Biol. 2, 576–581.

    CAS  Google Scholar 

  41. Kabsch, W. & Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers 22, 2577–2637.

    PubMed  CAS  Google Scholar 

  42. Li, M. & Ishibashi, T. (1990) Evidence for identifying fatty acids in rat liver glutathione 5-transferase and its possible involvement in secondary structure, J. Biochem. (Tokyo) 108, 462–465.

    CAS  Google Scholar 

  43. Nishihira, J., Ishibashi, T., Sakai, M., Nishi, S., Kumazaki, T. & Hatanaka, Y. (1992) Circular dichroic evidence for regulation of enzymatic activity by nonsubstrate hydrophobic ligand on glutathione 5-transferase P, Biochem. Biophys. Res. Commun. 189, 1243–1251.

    PubMed  CAS  Google Scholar 

  44. Nishihira, J., Ishibashi, T., Sakai, M., Tsuda, S. & Hikichi, K. (1993) Identification of the hydrophobic ligand-binding region in recombinant glutathione 5-transferase P and its binding effect on the conformational state of the enzyme, Arch. Biochem. Biophys. 302, 128–133.

    PubMed  CAS  Google Scholar 

  45. Holmgren, A., Soderberg, B.-O., Eklund, H. & Branden, C.-I. (1975) Three-dimensional structure of Escherichia coli thio- redoxin-S2 to 2.8 A resolution, Proc. Natl Acad. Sci. USA 72, 2305–2309.

    PubMed  CAS  Google Scholar 

  46. Eklund, H., Ingelman, M., Soderberg, B.-O., Nordlund, T. U. P., Nikkola, M., Sonnerstam, U. & Joelson, T. (1992) Structure of oxidized bacteriophage T4 glutaredoxin (thiore- doxin). Refinement of native and mutant proteins, J. Mol. Biol. 228, 596–618.

    PubMed  CAS  Google Scholar 

  47. Epp, O., Ladenstein, R. & Wendel, A. (1983) The refined structure of the selenoenzyme glutathione peroxidase at 0.2 nm resolution, Eur. J. Biochem. 133, 51–69.

    PubMed  CAS  Google Scholar 

  48. Chothia, C. & Lesk, A. M. (1986) The relation between the divergence of sequences and structure in proteins, EMBO J. 5, 823–829.

    PubMed  CAS  Google Scholar 

  49. Argos, P. (1988) An investigation of protein subunit and domain interfaces, Protein Eng. 2, 101–113.

    PubMed  CAS  Google Scholar 

  50. Janin, J., Miller, S. & Chothia, C. (1988) Surface, subunit interfaces and interior of oligomeric proteins, J. Mol. Biol 204, 155–164.

    PubMed  CAS  Google Scholar 

  51. Janin, J. & Chothia, C. (1990) The structure of protein-protein recognition sites, J. Biol. Chem. 265, 16027–16030.

    PubMed  CAS  Google Scholar 

  52. Dirr, H. W. & Reinemer, P. (1991) Equilibrium unfolding of class 71 glutathione 5-transferase, Biochem. Biophys. Res. Commun. 180, 294–300.

    PubMed  CAS  Google Scholar 

  53. Boyer, T. D. & Kempner, E. S. (1992) Effect of subunit interactions on enzymatic activity of glutathione 5-transferases: a radiation inactivation study, Anal. Biochem. 207, 51–57.

    PubMed  CAS  Google Scholar 

  54. Kwon, O.-S., Lo, S. C. L., Kwok, F. & Churchich, J. E. (1993) Reversible unfolding of myoinositol monophosphatase, J. Biol. Chem. 268, 7912–7916.

    PubMed  CAS  Google Scholar 

  55. Grant, S. K., Deckman, I. C., Culp, J. S., Minnich, M. D., Brooks, I. S., Hensley, P., Debouck, C. & Meek, T. D. (1992) Use of protein unfolding studies to determine the conformational and dimeric stabilities of HIV-1 and SIV proteases, Biochemistry 31, 9491–9501.

    PubMed  CAS  Google Scholar 

  56. Timm, D. E. & Neet, K. E. (1992) Equilibrium denaturation studies of mouse β-nerve growth factor, Protein Sci. 1, 236–244.

    PubMed  CAS  Google Scholar 

  57. Steif, C., Weber, P., Hinz, H.-J., Flossdorf, J., Cesareni, G. & Kokkinidis, M. (1993) Subunit interactions provide a significant contribution to the stability of the dimeric four-a-helical-bundle protein ROP, Biochemistry 32, 3867–3876.

    PubMed  CAS  Google Scholar 

  58. Stenberg, G., Board, P. G. & Mannervik, B. (1991) Mutation of an evolutionarily conserved tyrosine residue in the active site of a human class alpha glutathione transferase, FEBS Lett. 293, 153–155.

    PubMed  CAS  Google Scholar 

  59. Kong, K.-H., Nishida, M., Inoue, H. & Takahashi K. (1992) Tyrosine-7 is an essential residue for the catalytic activity of human class pi glutathione 5-transferase: chemical modification and site-directed mutagenesis studies, Biochem. Biophys. Res. Commun. 182, 1122–1129.

    PubMed  CAS  Google Scholar 

  60. Manoharan, T. H., Gulick, A. M., Reinemer, P., Dirr, H. W., Huber, R. & Fahl, W. E. (1992) Mutational substitution of residues implicated by crystal structure in binding the substrate glutathione to human glutathione 5-transferase n, J. Mol. Biol. 226, 319–322.

    PubMed  CAS  Google Scholar 

  61. Liu, S., Zhang, P., Ji, X., Johnson, W. W., Gilliland, G. L. & Armstrong, R. N. (1992) Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3–3 of glutathione 5- transferase, J. Biol. Chem. 267, 4296–4299.

    PubMed  CAS  Google Scholar 

  62. Penington, C. J. & Rule, G. S. (1992) Mapping the substratebinding site of a human class mu glutathione transferase using nuclear magnetic resonance spectroscopy, Biochemistry 31, 2912–2920.

    PubMed  CAS  Google Scholar 

  63. Wang, R. W., Newton, D. J., Huskey, S.-E. W., McKeever, B. M., Pickett, C. B. & Lu, A. Y. H. (1992) Site-directed mutagenesis of glutathione 5-transferase YaYa. Important roles of tyrosine 9 and aspartic acid 101 in catalysis, J. Biol. Chem. 267, 19866–19871.

    PubMed  CAS  Google Scholar 

  64. Kolm, R. H., Sroga, G. E. & Mannervik, B. (1992) Participation of the phenolic hydroxyl group of Tyr-8 in the catalytic mechanism of human glutathione transferase Pl-1, Biochem. J. 285, 537–540.

    PubMed  CAS  Google Scholar 

  65. Manoharan, T. H., Gulick, A. M., Puchalski, R. B., Servias, A. L. & Fahl, W. E. (1992) Structural studies on human glutathione 5-transferase π. Substitution mutations to determine amino acids necessary for binding glutathione, J. Biol. Chem. 267, 18940–18945.

    PubMed  CAS  Google Scholar 

  66. Stenberg, G., Board, P. G., Carlberg, I. & Mannervik, B. (1991) Effects of directed mutagenesis on conserved arginine residues in a human class alpha glutathione transferase, Biochem. J. 274, 549–555.

    PubMed  CAS  Google Scholar 

  67. Widersten, M., Kolm, R. H., Bjomestedt, R. & Mannervik, B. (1992) Contribution of five amino acid residues in the glutathione-binding site to the function of human glutathione transferase Pl-1, Biochem. J. 285, 377–381.

    PubMed  CAS  Google Scholar 

  68. Kong, K.-H., Inoue, H. & Takahashi, K. (1992) Site-directed mutagenesis of amino acid residues involved in the glutathione binding of human glutathione 5-transferase Pl-1, J. Biochem. (Tokyo) 112, 725–728.

    CAS  Google Scholar 

  69. Kong, K.-H., Inoue, H. & Takahashi, K. (1992) Site-directed mutagenesis study of the roles of evolutionally conserved aspartic acid residues in human glutathione 5-transferase Pl-1, Protein Eng. 6, 93–99.

    Google Scholar 

  70. Danielson, U. H. & Mannervik, B. (1985) Kinetic independence of the subunits of cytosolic glutathione transferase from the rat, Biochem. J. 231, 263–267.

    PubMed  CAS  Google Scholar 

  71. Board, P. G. & Webb, G. C. (1987) Isolation of a cDNA clone and localization of human glutathione 5-transferase 2 genes to chromosome band Gpl2, Proc. Natl Acad. Sci. USA 84, 2377–2381.

    PubMed  CAS  Google Scholar 

  72. Rhoads, D. M., Zarlengo, R. P. & Tu, C.-P D. (1987) The basic glutathione 5-transferases from human livers are products of separate genes, Biochem. Biophys. Res. Commun. 145, 474–481.

    PubMed  CAS  Google Scholar 

  73. Pickett, C. B., Telakowski-Hopkins, C. A., Ding, G. J.-F., Argenbright, L. & Lu, A. Y. H. (1984) Rat liver glutathione 5- transferase - complete nucleotide sequence of a glutathione 5-transferase mRNA and the regulation of the Ya, Yb and Yc mRNAs by 3-methylcholanthrene and phenobarbital, J. Biol Chem. 259, 5182–5188.

    PubMed  CAS  Google Scholar 

  74. Telakowski-Hopkins, C. A., Rodkey, J. A., Bennett, C. D., Lu, A. Y. H. & Pickett, C. B. (1985) Rat liver glutathione 5- transferase - construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit, J. Biol. Chem. 260, 5820–5825.

    PubMed  CAS  Google Scholar 

  75. Alin, P Jensson, H., Cederlund, E., Jomvall, H. & Mannervik, B. (1989) Cytosolic glutathione transferases form rat liver - primary structure of class alpha glutathione transferase 8–8 and characterization of low-abundance class mu glutathione transferases, Biochem. J. 261, 531–539.

    PubMed  CAS  Google Scholar 

  76. Daniel, V., Sharon, R., Tichauer, Y. & Sarid, S. (1987) Mouse glutathione 5-transferase Ya: gene structure and sequence, DNA 6, 317–324.

    PubMed  CAS  Google Scholar 

  77. Gardlik, S., Gasser, R., Philipo, R. M. & Serabjit-Singh, C. J. (1991) The major alpha-class glutathione 5-transferases of rabbit lung and liver, J. Biol. Chem. 266, 19681–19687.

    PubMed  CAS  Google Scholar 

  78. Ding, G. J.-F., Lu, A. Y. H. & Pickett, C. B. (1985) Rat liver glutathione transferases - nucleotide sequence analysis of a Ybl cDNA clone and prediction of the complete amino acid sequence of the Ybl subunit, J. Biol. Chem. 260, 1326813271.

    Google Scholar 

  79. Ding, G. J.-F., Ding, V. D.-H., Bennett, C. D., Lu, A. Y. H. & Pickett, C. B. (1986) Rat liver glutathione transferases - DNA sequence analysis of a Yb2 cDNA clone and regulation of the Ybl and Yb2 mRNAs by phenobarbital, J. Biol. Chem. 261, 7952–7957.

    PubMed  CAS  Google Scholar 

  80. Abramowitz, M. & Listowsky, I. (1987) Selective expression of a unique glutathione 5-transferase Yb3 gene in rat brain, J. Biol. Chem. 262, 7770–7773.

    Google Scholar 

  81. Seidegard, J., Voracheck, W. R., Pero, R. W. & Pearson, W. R. (1988) Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion, Proc. Natl Acad. Sci. USA 85, 7293–7297.

    PubMed  CAS  Google Scholar 

  82. Townsend, A. J., Goldsmith, M. E., Pickett, C. B. & Cowan, K. H. (1989) Isolation, characterization, and expression in Escherichia coli of two murine mu class glutathione 5-transferase cDNAs homologous to the rat subunits 3 (Ybl) and 4 (Yb2), J. Biol. Chem. 264, 21582–21590.

    PubMed  CAS  Google Scholar 

  83. Liu, L.-F. & Tam, M. F. (1991) Nucleotide sequence of a class ji glutathione 5-transferase from chicken liver, Biochim. Biophys. Acta 1090, 4296–4299.

    Google Scholar 

  84. Kamei, K., Oshino, R. & Hara, S. (1990) Amino acid sequence of glutathione 5-transferase b from guinea pig liver, J. Biochem. (Tokyo) 107, 111–117.

    CAS  Google Scholar 

  85. Kano, T., Sakai, M. & Muramatsu, M. (1987) Structure and expression of a human class n glutathione 5-transferase messenger RNA, Cancer Res. 47, 5626–5630.

    PubMed  CAS  Google Scholar 

  86. Suguoka, Y., Kano, T., Okuda, A., Sakai, M., Kitagawa, T. & Muramutsu, M. (1985) Cloning and the nucleotide sequence of rat glutathione 5-transferase P cDNA, Nucleic Acids Res. 13, 6049–6057.

    PubMed  CAS  Google Scholar 

  87. Hatayama, I., Satoh, K. & Sato, K. (1990) A cDNA sequence coding a class pi glutathione 5-transferase of mouse, Nucleic Acids Res. 18, 4606.

    PubMed  CAS  Google Scholar 

  88. Adang, A. E. P, Brussee, J., Meyer, D. J., Coles, B., Ketterer, B., VanDerGen, A. & Mulder, G. J. (1988) Substrate specificity of rat liver glutathione 5-transferase isoenzymes for a series of glutathione analogues, modified at the γ-glutamyl moiety, Biochem. J. 255, 721–724.

    PubMed  CAS  Google Scholar 

  89. Adang, A. E. P., Meyer, D. J., Brussee, J., VanDerGen, A., Ketterer, B. & Mulder, G. J. (1989) Interaction of rat glutathione 5-transferases 7–7 and 8–8 with γ-glutamyl- or glycyl- modified glutathione analogues, Biochem. J. 264, 759–764.

    PubMed  CAS  Google Scholar 

  90. Adang, A. E. P., Brussee, J., VanDerGen & Mulder, G. J. (1990) The glutathione-binding site in glutathione 5-transferases. Investigation of the cysteinyl, glycyl and γ-glutamyl domains, Biochem. J. 269, 47–54.

    PubMed  CAS  Google Scholar 

  91. Hol, W. G. J. (1985) The role of the a-helix dipole in protein function and structure, Prog. Biophys. Mol. Biol. 45, 149–195.

    PubMed  CAS  Google Scholar 

  92. Nishihira, J., Ishibashi, T., Sakai, M., Nishi, S. & Kumazaki, T. (1992) Evidence for the involvement of tryptophan 38 in the active site of glutathione 5-transferase P, Biochem. Biophys. Res. Commun. 185, 1069–1077.

    PubMed  CAS  Google Scholar 

  93. Chen, W.-J., Graminski, G. F. & Armstrong, R. N. (1988) Dissection of the catalytic mechanism of isoenzyme 4–4 of glutathione 5-transferase with alternative substrates, Biochemistry 27, 647–654.

    PubMed  CAS  Google Scholar 

  94. Zhang, P. & Armstrong, R. N. (1990) Construction, expression, and preliminary characterization of chimeric class ji glutathione 5-transferases with altered catalytic properties, Biopolymers 29, 159–169.

    PubMed  CAS  Google Scholar 

  95. Phillips, M. F. & Mantle, T. J. (1991) The initial-rate kinetics of mouse glutathione 5-transferase YfYf. Evidence for an allosteric site for ethacrynic acid, Biochem. J. 275, 703–709.

    PubMed  CAS  Google Scholar 

  96. Eklund, H., Gleason, F. K. & Holmgren, A. (1991) Structural and functional relations among thioredoxins of different species, Proteins Struct. Funct. Genet. 11, 13–28.

    PubMed  CAS  Google Scholar 

  97. Jakobson, I., Warholm, M. & Mannervik, B. (1979) The binding of a substrate and a product of the enzymatic reaction to glutathione 5-transferase, J. Biol. Chem. 254, 7085.

    PubMed  CAS  Google Scholar 

  98. Principato, G. B., Danielson, U. H. & Mannervik, B. (1988) Relaxed thiol substrate specificity of glutathione transferase effected by a non-substrate glutathione derivative, FEBS Lett. 231, 155–158.

    PubMed  CAS  Google Scholar 

  99. Caccuri, A. M., Petruzzelli, R., Polizio, F., Federici, G. & Desideri, A. (1992) Inhibition of glutathione transferase n from human placenta by l-chloro-2,4-dinitrobenzene occurs because of covalent reaction with cysteine 47, Arch. Biochem. Biophys. 297, 119–122.

    PubMed  CAS  Google Scholar 

  100. Caccuri, A. M., Polizio, F., Piemonte, F., Tagliatesta, P., Federici, G. & Desideri, A. (1992) Investigation of the active site of human glutathione transferase π by means of a spinlabelled glutathione analogue, Biochim. Biophys. Acta 1122, 265–268.

    PubMed  CAS  Google Scholar 

  101. Tamai, K., Satoh, K., Tsuchida, C., Hatayama, I., Maki, T. & Sato, K. (1990) Specific inactivation of glutathione 5-transferase in class pi by SH-modifiers, Biochem. Biophys. Res. Commun. 167, 331–338.

    PubMed  CAS  Google Scholar 

  102. Tamai, K., Shen, H., Tsuchida, C., Hatayama, I., Satoh, K., Yasui, A., Oikawa, A. & Sato, K. (1991) Role of cysteine residues in the activity of rat glutathione transferase P (7–7): elucidation by site-directed mutagenesis, Biochem. Biophys. Res. Commun. 179, 790–797.

    PubMed  CAS  Google Scholar 

  103. Nishihira, J., Ishibashi, T., Sakai, M., Nishi, S., Kumazaki., T., Hatanaka, Y., Tsuda, S. & Hildchi, K. (1992) Characterization of cysteine residues of glutathione 5-transferase P: evidence for steric hindrance of substrate binding by a bulky adduct to cysteine 47, Biochem. Biophys. Res. Commun. 188, 424–432.

    PubMed  CAS  Google Scholar 

  104. Nishihara, T., Maeda, H., Okamoto, K.-L, Oshida, T., Mizoguchi, T. & Terada, T. (1991) Inactivation of human placenta glutathione 5-transferase by SH/SS exchange reaction with biological disulfides, Biochem. Biophys. Res. Commun. 174, 580–585.

    PubMed  CAS  Google Scholar 

  105. Terada, T., Maeda, H., Okamoto, K., Nishinaka, T., Mizoguchi, T. & Nishihara, T. (1993) Modulation of glutathione 5-transferase activity by a thiol/disulfide exchange reaction and involvement of thioltransferase, Arch. Biochem. Biophys. 300, 495–500.

    PubMed  CAS  Google Scholar 

  106. Shen, H., Tsuchida, S., Tamai, K. & Sato, K. (1993) Identification of cysteine residues involved in disulfide formation in the inactivation of glutathione transferase P-form by hydrogen peroxide, Arch. Biochem. Biophys. 300, 137–141.

    PubMed  CAS  Google Scholar 

  107. Lo Bello, M., Pastore, A., Petruzzelli, R., Parker, M. W., Wilce, M. C. J., Federici, G. & Ricci, G. (1993) Conformational states of human placental glutathione 5-transferase as probed by limited proteolysis, Biochem. Biophys. Res. Commun. 194, 804–810.

    PubMed  Google Scholar 

  108. Caccuri, A. M., Aceto, A., Piemonte, F., Di Ilio, C., Rosato, N. & Federici, G. (1990) Interaction of hemin with placental glutathione transferase, Eur. J. Biochem. 189, 493–497.

    PubMed  CAS  Google Scholar 

  109. Takikawa, H., Sugiyama, Y. & Kaplowitz, N. (1988) Comparison of the effects of bile acids and GSH on the fluorescence of bound l-anilino-8-naphthalene sulfonate and the enzymatic activity of cationic and neutral human hepatic GSH 5-transferases, Biochim. Biophys. Acta 954, 37–43.

    PubMed  CAS  Google Scholar 

  110. Johnson, W. W., Liu, S., Ji, X., Gilliland, G. L. & Armstrong, R. N. (1993) Tyrosine 115 participates both in chemical and physical steps of the catalytic mechanism of a glutathione 5- transferase, J. Biol. Chem. 268, 11508–11511.

    PubMed  CAS  Google Scholar 

  111. Katusz, R. M. & Colman, R. F. (1991) 5-(4-Bromo-2,3-dioxo-butyl)glutathione: a new affinity label for the 4–4 isoenzyme of rat liver glutathione 5-transferase, Biochemistry 30, 11230–11238.

    PubMed  CAS  Google Scholar 

  112. Katusz, R. M., Bono, B. & Colman, R. F. (1992) Affinity labeling of Cys111 of glutathione 5-transferase, isoenzyme 1–1, by 5-(4-bromo-2,3-dioxobutyl)glutathione, Biochemistry 31, 8984–8990.

    PubMed  CAS  Google Scholar 

  113. Katusz, R. M., Bono, B. & Colman, R. F. (1992) Identification of Tyr115 labeled by 5-(4-bromo-2,3-dioxobutyl)glutathione in the hydrophobic substrate binding site of glutathione 5-transferase, isoenzyme 3–3, Arch. Biochem. Biophys. 298, 667–677.

    PubMed  CAS  Google Scholar 

  114. Hoesch, R. M. & Boyer, T. D. (1989) Localization of a portion of the active site of two rat liver glutathione 5-transferases using a photoaffinity label, J. Biol. Chem. 264, 17712–17717.

    PubMed  CAS  Google Scholar 

  115. Board, R G. & Mannervik, B. (1991) The contribution of the C-terminal sequence to the catalytic activity of GST2, a human alpha-class glutathione transferase, Biochem. J. 275, 171–174.

    PubMed  CAS  Google Scholar 

  116. Danielson, U. H., Esterbauer, H., Mannervik, B. (1987) Structure-activity relationships of 4-hydroxyalkenals in the conjugation catalysed by mammalian glutathione transferases, Biochem. J. 247, 707–713.

    PubMed  CAS  Google Scholar 

  117. Askelof, R, Guthenberg, C., Jakobson, I. & Mannervik, B. (1975) Purification and characterization of two glutathione 5-aryltransferase activities from rat liver, Biochem. J. 147, 513–522.

    PubMed  CAS  Google Scholar 

  118. Zhang, P., Liu, S., Shan, S., Ji, X., Gilliland, G. L. & Armstrong, R. N. (1992) Modular mutagenesis of exons 1, 2, and 8 of a glutathione 5-transferase from the mu class. Mechanistic and structural consequences for chimeras of isoenzyme 3–3, Biochemistry 31, 10185–10193.

    PubMed  CAS  Google Scholar 

  119. Armstrong, R. N. (1987) Enzyme-catalyzed detoxication reactions : mechanisms and stereochemistry, CRC Crit. Rev. Biochem. Mol. Biol. 22, 39–88.

    CAS  Google Scholar 

  120. Wang, R. W., Newton, D. J., Pickett, C. B. & Lu, A. Y. H. (1991) Site-directed mutagenesis of glutathione 5-transferase YaYa: nonessential role of histidine in catalysis, Arch. Biochem. Biophys. 286, 574–578.

    PubMed  CAS  Google Scholar 

  121. Zhang, P., Graminski, G. F. & Armstrong, R. N. (1991) Are the histidine residues of glutathione 5-transferase important in catalysis? An assessment by 13C-NMR spectroscopy and site-directed mutagenesis, J. Biol. Chem. 266, 1947519479.

    Google Scholar 

  122. Widersten, M., Holmstrom, E. & Mannervik, B. (1991) Cysteine residues are not essential for the catalytic activity of human class mu glutathione transferase Mla-la, FEBS Lett. 293, 156–159.

    PubMed  CAS  Google Scholar 

  123. Kong, K.-H., Inoue, H. & Takahashi, K. (1991) Non-essentiality of cysteine and histidine residues for the activity of human class pi glutathione 5-transferase, Biochem. Biophys. Res. Commun. 181, 748–755.

    PubMed  CAS  Google Scholar 

  124. Wang, R. W., Newton, D. J., Pickett, C. B. & Lu, A. H. Y. (1992) Site-directed mutagenesis of glutathione 5-transferase YaYa: functional studies of histidine, cysteine, and tryptophan mutants, Arch. Biochem. Biophys. 297, 86–91.

    PubMed  CAS  Google Scholar 

  125. Chang, L.-H. & Tam, M. F. (1993) Site-directed mutagenesis and chemical modification of histidine residues on an a-class chick liver glutathione 5-transferase CL 3–3. Histidines are not needed for the activity of the enzyme and diethylpyrocar- bonate modifies both histidine and lysine residues, Eur. J. Biochem. 211, 805–811.

    PubMed  CAS  Google Scholar 

  126. Huskey, S.-E. W., Huskey, W. P. & Lu, A. Y. H. (1991) Contributions of thiolate ‘desolvation’ to catalysis by glutathione 5- transferase isoenzymes 1–1 and 2–2: evidence from kinetic solvent isotope effects, J. Am. Chem. Soc. 113, 22832290.

    Google Scholar 

  127. Kong, K.-H., Takasu, K., Inoue, H. & Takahashi, K. (1992) Tyrosine-7 in human class pi glutathione 5-transferase is important for lowering the pK a of the thiol group of glutathione in the enzyme-glutathione complex, Biochem. Biophys. Res. Commun. 184, 194–197.

    PubMed  CAS  Google Scholar 

  128. Graminski, G. F., Kubo, Y. & Armstrong, R. N. (1989) Spectroscopic and kinetic evidence for the thiolate anion of glutathione at the active site of glutathione 5-transferase, Biochemistry 28, 3562–3568.

    PubMed  CAS  Google Scholar 

  129. Kreevoy, M. M. & Liang, T. M. (1980) Structures and isotopic fractionation factors of complexes, A1HA2 -1, J. Am. Chem. Soc. 102, 3315–3322.

    CAS  Google Scholar 

  130. Cleland, W. W. (1992) Low-barrier hydrogen bonds and low fractionation bases in enzymatic reactions, Biochemistry 31, 317–319.

    PubMed  CAS  Google Scholar 

  131. Liu, S., Ji, X., Gilliland, G. L., Stevens, W. J. & Armstrong, R. N. (1993) Second-sphere electrostatic effects in the active site of glutathione 5-transferase. Observation of an on-face hydrogen bond between the side chain of threonine 13 and the π-cloud of tyrosine 6 and its influence on catalysis, J. Am. Chem. Soc. 115, 7910–7911.

    CAS  Google Scholar 

  132. Meyer, D. J., Xia, C., Coles, B., Chen, H., Reinemer, P., Huber, R. & Ketterer, B. (1993) Unusual reactivity of Tyr-7 of GSH transferase Pl-1, Biochem. J. 293, 351–356.

    PubMed  CAS  Google Scholar 

  133. Karshikoff, A., Reinemer, P., Huber, R. & Ladenstein, R. (1993) Electrostatic evidence for the activation of the glutathione thiol by Tyr7 in 7r-class glutathione transferases, Eur. J. Biochem. 215, 663–670.

    PubMed  CAS  Google Scholar 

  134. Atkins, W. M., Wang, R. W., Bird, A. W., Newton, D. J. & Lu, A. Y. H. (1993) The catalytic mechanism of glutathione transferase (GST): spectroscopic determination of the pK a of Tyr-9 in rat al-1 GST, J. Biol. Chem. 268, 19188–19191.

    PubMed  CAS  Google Scholar 

  135. Adams, P. A., Goold, R. D. & Sikakana, C. N. T. (1989) Active site solvation contributes significantly to inactivation of the glutathione 5-transferases (GST), Biochem. Pharmacol. 38, 3124–3126.

    PubMed  CAS  Google Scholar 

  136. Kraut, J. (1988) How do enzymes work? Science 242, 533–540.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 FEBS

About this chapter

Cite this chapter

Dirr, H., Reinemer, P., Huber, R. (1994). X-ray crystal structures of cytosolic glutathione S-transferases. In: EJB Reviews 1994. EJB Reviews 1994, vol 1994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79502-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79502-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58830-6

  • Online ISBN: 978-3-642-79502-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics