Advertisement

Inhibition and catalysis of carbonic anhydrase

Recent crystallographic analyses
  • Anders Liljas
  • Kjell Håkansson
  • Bengt Harald Jonsson
  • Yafeng Xue
Part of the EJB Reviews 1994 book series (EJB REVIEWS, volume 1994)

Abstract

The zinc enzyme carbonic anhydrase (carbonate hydrolyase) has been intensely investigated since its discovery (Meldrum and Roughton, 1933; Stadie and O’Brien, 1933). Seven different isoenzymes have been characterized in mammals (Tashian, 1992). Physiologically the enzyme catalyses the reversible hydration of carbon dioxide to bicarbonate. Despite the simplicity of this reaction it has been difficult to determine the mechanism by which the enzyme catalyses the reaction. The kinetics and inhibition of the enzyme have been extensively studied and repeatedly reviewed (Lindskog et al., 1984; Silverman and Lindskog, 1988). The zinc ion of the enzyme is coordinated to three histidine residues and a water molecule with a pK a value of about 7 (Lindskog et al., 1983). It is generally accepted that the catalyzed hydration of CO2 involves two half reactions as shown in Eqns (1) and (2).

Keywords

Sulfonamide Group Tetrahedral Coordination Hydrophobic Cavity Hydrogen Sulfate Anion Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CA

carbonic anhydrase, roman numbers indicate isoenzyme number.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, J. J., Ponticello, G. S., Anderson, P. S., Christy, M. E., Murcko, M. A., Randall, W. C., Schwam, H., Sugrue, M. F., Springer, J. P., Gautheron, P., Grove, J., Mallorga, P, Viader, M.- P, McKeever, B. M. & Navia, M. A. (1989) J. Med. Chem. 32, 2510–2513.PubMedCrossRefGoogle Scholar
  2. Behravan, G., Jonsson, B.-H. & Lindskog, S. (1990) Eur. J. Biochem. 190, 351–357.PubMedCrossRefGoogle Scholar
  3. Bertini, I. & Luchinat, C. (1983) Acc. Chem. Res. 16, 272–279.CrossRefGoogle Scholar
  4. Bertini, I., Luchinat, C. & Scozzafava, A. (1982) Struct. Bonding 48, 45–92.CrossRefGoogle Scholar
  5. Bertini, I., Luchinat, C., Pieratelli, R. & Vila, A. J. (1992a) Inorg. Chem. 31, 3975–3979.CrossRefGoogle Scholar
  6. Bertini, I., Luchinat, C., Pieratelli, R. & Vila, A. J. (1992b) Eur. J. Biochem. 208, 607–615.PubMedCrossRefGoogle Scholar
  7. Bode, W. & Huber, R. (1992) Eur. J. Biochem. 204, 433–451.PubMedCrossRefGoogle Scholar
  8. Bürgi, H. B., Dunitz, J. & Schefter, E. (1973) J. Am. Chem. Soc. 95, 5065–5067.CrossRefGoogle Scholar
  9. Bürgi, H. B. & Dunitz, J. D. (1983) Acc. Chem. Res. 16, 153–161.CrossRefGoogle Scholar
  10. Christianson, D. & Lipscomb, W. N. (1986) in The zinc enzymes (Bertini, I., Luchinat, C., Maret, W. & Zeppezauer, M., eds) pp. 121–132, Birkhäuser Boston Inc., Boston MA.Google Scholar
  11. Coleman, J. E. (1967) Nature 214, 193–194.PubMedCrossRefGoogle Scholar
  12. Eriksson, E. A., Jones, T. A. & Liljas, A. (1986) in The zinc enzymes (Bertini, I., Luchinat, C., Maret, W. & Zeppezauer, M., eds) pp. 317–328, Birkhäuser Boston Inc., Boston MA.Google Scholar
  13. Eriksson, E. A., Jones, T. A. & Liljas, A. (1988a) Proteins 4, 274–282.PubMedCrossRefGoogle Scholar
  14. Eriksson, E. A., Kylsten, P. M., Jones, T. A. & Liljas, A. (1988b) Proteins 4, 283–293.PubMedCrossRefGoogle Scholar
  15. Eriksson, E. A. & Liljas, A. (1991) in The carbonic anhydrases (Dodgson, S. J., Tashian, R. E., Gros, G. & Carter, N. D., eds) pp. 33–48, Plenum Press, New York.Google Scholar
  16. Feeney, J., Burgen, A. S. V. & Grell, E. (1973) Eur. J. Biochem. 34, 107–111.PubMedCrossRefGoogle Scholar
  17. Fierke, C. A., Calderone, T. L. & Krebs, J. F. (1991) Biochemistry 30, 11054–11063.PubMedCrossRefGoogle Scholar
  18. Håkansson, K. (1992) Ph. D. Thesis, Lund University.Google Scholar
  19. Håkansson, K. & Wehnert, A. (1992) J. Mol. Biol. 228, 1212–1218.PubMedCrossRefGoogle Scholar
  20. Håkansson, K., Carlsson, M., Svensson, L. A. & Liljas, A. (1992) J. Mol. Biol. 227, 1192–1204.PubMedCrossRefGoogle Scholar
  21. Håkansson, K., Briand, C., Zaitsev, V., Xue, Y. & Liljas, A. (1993a) Acta Crystallogr. D., in the press.Google Scholar
  22. Håkansson, K., Wehnert, A. & Liljas, A. (1993b) Acta Crystallogr. D., in the press.Google Scholar
  23. Jonsson, N. B. H., Tibell, L. A. E., Eveloch, J. L., Bell, S. J. & Sudmeier, J. L. (1980) Proc. Natl Acad. Sci. USA 77, 3269–3272.PubMedCrossRefGoogle Scholar
  24. Jonsson, B., Håkansson, K. & Liljas, A. (1993) FEBS Lett. 322, 186–190.PubMedCrossRefGoogle Scholar
  25. Kannan, K. K., Petef, M., Fridborg, K., Cid-Dresdner, H. & Lövgren, S. (1977) FEBS Lett. 73, 115–119.PubMedCrossRefGoogle Scholar
  26. Keilin, D. & Mann, T. (1940) Biochem. J. 34, 1163–1176.PubMedGoogle Scholar
  27. Khalifah, R. G. (1971) J. Biol. Chem. 246, 2561–2573.PubMedGoogle Scholar
  28. King, R. W. & Burgen, A. S.V. (1970) Biochim. Biophys. Acta 207, 278–285.PubMedGoogle Scholar
  29. Krebs, J. F., Rana, F., Dluhy, R. A. & Fierke, C. A. (1993) Biochemistry 32, 4496–4505.PubMedCrossRefGoogle Scholar
  30. Kumar, K., King, R. W. & Carey, P. R. (1976) Biochemistry 15, 2195–2202.PubMedCrossRefGoogle Scholar
  31. Kumar, V., Satyamurthy, P. & Kannan, K. K. (1987) Acta Crystallogr. Suppl. A43, C23.Google Scholar
  32. Liang, J.-Y. & Lipscomb, W. N. (1987) Biochemistry 26, 5293–5301.PubMedCrossRefGoogle Scholar
  33. Liang, J.-Y. & Lipscomb, W. N. (1990) Proc. Natl Acad. Sci. USA 87, 3675–3679.PubMedCrossRefGoogle Scholar
  34. Liang, Z., Xue, Y., Behravan, G., Jonsson, B.-H. & Lindskog, S. (1992) Eur. J. Biochem. 211, 821–827.CrossRefGoogle Scholar
  35. Liljas, A., Kannan, K. K., Bergstén, P.-C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Järup, L., Lövgren, S. & Petef, M. (1972) Nat. New Biol. 235, 131–137.PubMedGoogle Scholar
  36. Lindahl, M., Liljas, A., Habash, J., Harrop, S. & Helliwell, J. R. (1992) Acta Crystallogr. B48, 281–285.Google Scholar
  37. Lindahl, M., Svensson, L. A. & Liljas, A. (1993) Proteins 15, 177–182.PubMedCrossRefGoogle Scholar
  38. Lindskog, S. (1963) J. Biol. Chem. 238, 945–951.PubMedGoogle Scholar
  39. Lindskog, S. & Nyman, P. O. (1964) Biochim. Biophys. Acta 85, 462–474.PubMedGoogle Scholar
  40. Lindskog, S., Ibrahim, S. A., Jonsson, B. H. & Simonsson, I. (1983) in The coordination chemistry of metalloenzymes (Bertini, I., Drago, R. S. & Luchinat, C., eds) pp. 49–64, D. Reidel Publishing Company, Dordrecht.Google Scholar
  41. Lindskog, S., Engberg, P., Forsman, C., Ibrahim, S. A., Jonsson, B.-H., Simonsson, I. & Tibell, L. (1984) Ann. N. Y. Acad. Sci. 429, 61–75.PubMedCrossRefGoogle Scholar
  42. Lindskog, S. & Wistrand, P. J. (1989) in Design of enzyme inhibitors as drugs (Sandler, H. & Smith, H. J, eds) pp. 698–723, Oxford University Press, N-1.Google Scholar
  43. Lipscomb, W. N. (1983) Annu. Rev. Biochem. 52, 17–34.PubMedCrossRefGoogle Scholar
  44. Mangani, S. & Håkansson, K. (1992) Eur. J. Biochem. 210, 867–871.PubMedCrossRefGoogle Scholar
  45. Mangani, S. & Liljas, A. (1993) J. Mol. Biol. 232, 9–14.PubMedCrossRefGoogle Scholar
  46. Mann, T. & Keilin, D. (1940) Nature 146, 164–165.CrossRefGoogle Scholar
  47. Maren, T. H. (1988) Annu. Rev. Physiol. 50, 695–717.PubMedCrossRefGoogle Scholar
  48. Marquart, M., Walter, J., Deisenhover, J., Bode, W. & Huber, R. (1983) Acta Crystallogr. B39, 480–490.Google Scholar
  49. McPhalen, C. A. & James, M. N. G. (1988) Biochemistry 27, 6582–6598.PubMedCrossRefGoogle Scholar
  50. Meldrum, N. U. & Roughton, F. J. W. (1933) J. Physiol. (Lond.) 80, 113–141.Google Scholar
  51. Merz, K. M. Jr (1990) J. Mol Biol. 214, 799–802.PubMedCrossRefGoogle Scholar
  52. Merz, K. M. Jr (1991) J. Am. Chem. Soc. 113, 406–411.CrossRefGoogle Scholar
  53. Merz, K. M. Jr, Murcko, M. A. & Kollman, P. A. (1991) J. Am. Chem. Soc. 113, 4484–4490.CrossRefGoogle Scholar
  54. Nair, S. K., Calderone, T. L., Christianson, D. W. & Fierke, C. A. (1991) J. Biol. Chem. 266, 17320–17325.PubMedGoogle Scholar
  55. Nair, S. K. & Christianson, D. W. (1991) J. Am. Chem. Soc. 113, 9455–9458.CrossRefGoogle Scholar
  56. Nair, S. K. & Christianson, D. W. (1993) Eur. J. Biochem. 213, 507–515.PubMedCrossRefGoogle Scholar
  57. Prabhananda, B. S., Rittger, E. & Grell, E. (1987) Biophys. Chem. 26, 217–224.PubMedCrossRefGoogle Scholar
  58. Silverman, D. N. & Lindskog, S. (1988) Acc. Chem. Res. 21, 30–36.CrossRefGoogle Scholar
  59. Stadie, W. C. & O’Brien, H. (1933) J. Biol Chem. 103, 521–529.Google Scholar
  60. Steiner, H., Jonsson, B.-H. & Lindskog, S. (1975) Eur. J. Biochem. 59, 253–259.PubMedCrossRefGoogle Scholar
  61. Tashian, R. E. (1992) Adv. Genet. 30, 321–356.PubMedCrossRefGoogle Scholar
  62. Thorslund, A. & Lindskog, S. (1967) Eur. J. Biochem. 3, 117–123.PubMedCrossRefGoogle Scholar
  63. Tu, C., Wynns, G. C. & Silverman, D. N. (1981) J. Biol. Chem. 256, 9466–9470.PubMedGoogle Scholar
  64. Tu, C., Silverman, D. N., Forsman, C., Jonsson, B. H. & Lindskog, S. (1989) Biochemistry 28, 7913–7918.PubMedCrossRefGoogle Scholar
  65. Vidgren, J., Liljas, A., Walker, N. P C. (1990) Int. J. Macromol. 12, 342–344.CrossRefGoogle Scholar
  66. Vidgren, J., Svensson, L. A. & Lilias, A. (1993) Int. J. Macromol. 15, 97–100.CrossRefGoogle Scholar
  67. Xue, Y., Vidgren, J., Svensson, L. A., Liljas, A., Jonsson, B. H. & Lindskog, S. (1993a) Proteins 15, 80–87.PubMedCrossRefGoogle Scholar
  68. Xue, Y., Liljas, A., Jonsson, B. H. & Lindskog, S. (1993b) Proteins 17,93–106.PubMedCrossRefGoogle Scholar
  69. Yachandra, V., Powers, L. & Spiro, T. G. (1983) J. Am. Chem. Soc. 105,6596–6604.CrossRefGoogle Scholar

Copyright information

© FEBS 1994

Authors and Affiliations

  • Anders Liljas
    • 1
  • Kjell Håkansson
    • 1
  • Bengt Harald Jonsson
    • 2
  • Yafeng Xue
    • 2
  1. 1.Molecular BiophysicsUniversity of LundLundSweden
  2. 2.BiochemistryUniversity of UmeåSweden

Personalised recommendations